Uniform asymptotic stability of a discontinuous predator-prey model under control via non-autonomous systems theory (2018)
- Authors:
- USP affiliated authors: BONOTTO, EVERALDO DE MELLO - ICMC ; FEDERSON, MÁRCIA CRISTINA ANDERSON BRAZ - ICMC
- Unidade: ICMC
- Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS; BIOMATEMÁTICA; SISTEMAS DE CONTROLE
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Differential and Integral Equations
- ISSN: 0893-4983
- Volume/Número/Paginação/Ano: v. 31, n. 7-8, p. 519-546, 2018
-
ABNT
BONOTTO, Everaldo de Mello e FERREIRA, J. Costa e FEDERSON, Marcia. Uniform asymptotic stability of a discontinuous predator-prey model under control via non-autonomous systems theory. Differential and Integral Equations, v. 31, n. 7-8, p. 519-546, 2018Tradução . . Disponível em: https://projecteuclid.org/euclid.die/1526004029. Acesso em: 13 fev. 2026. -
APA
Bonotto, E. de M., Ferreira, J. C., & Federson, M. (2018). Uniform asymptotic stability of a discontinuous predator-prey model under control via non-autonomous systems theory. Differential and Integral Equations, 31( 7-8), 519-546. Recuperado de https://projecteuclid.org/euclid.die/1526004029 -
NLM
Bonotto E de M, Ferreira JC, Federson M. Uniform asymptotic stability of a discontinuous predator-prey model under control via non-autonomous systems theory [Internet]. Differential and Integral Equations. 2018 ; 31( 7-8): 519-546.[citado 2026 fev. 13 ] Available from: https://projecteuclid.org/euclid.die/1526004029 -
Vancouver
Bonotto E de M, Ferreira JC, Federson M. Uniform asymptotic stability of a discontinuous predator-prey model under control via non-autonomous systems theory [Internet]. Differential and Integral Equations. 2018 ; 31( 7-8): 519-546.[citado 2026 fev. 13 ] Available from: https://projecteuclid.org/euclid.die/1526004029 - Poisson stability for impulse semidynamical systems
- Oscillation theory on generalized ODEs
- Boundedness of solutions of retarded functional differential equations with variable impulses via generalized ordinary differential equations
- Dichotomies for generalized ordinary differential equations and applications
- Oscillation for a second-order neutral differential equation with impulses
- A Feynman-Kac solution to a random impulsive equation of Schrödinger type
- Zhukovskij stability on generalized ordinary differential equations
- Stability of functional differential equations with variable impulsive perturbations via generalized ordinary differential equations
- On exponential stability of functional differential equations with variable impulse perturbations
- Oscillation theory for linear evolution processes
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
