Local well posedness, asymptotic behavoir and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time (2009)
- Authors:
- Autor USP: CARVALHO, ALEXANDRE NOLASCO DE - ICMC
- Unidade: ICMC
- DOI: 10.1090/s0002-9947-08-04789-2
- Subjects: EQUAÇÕES DIFERENCIAIS; EQUAÇÕES DIFERENCIAIS FUNCIONAIS; EQUAÇÕES DIFERENCIAIS ORDINÁRIAS
- Language: Inglês
- Imprenta:
- Publisher place: Providence
- Date published: 2009
- Source:
- Título: Transactions of the American Mathematical Society
- ISSN: 0002-9947
- Volume/Número/Paginação/Ano: v. 361, n. 5, p. 2567-2586, 2009
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
CARVALHO, Alexandre Nolasco de e CHOLEWA, J W. Local well posedness, asymptotic behavoir and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time. Transactions of the American Mathematical Society, v. 361, n. 5, p. 2567-2586, 2009Tradução . . Disponível em: https://doi.org/10.1090/s0002-9947-08-04789-2. Acesso em: 24 jan. 2026. -
APA
Carvalho, A. N. de, & Cholewa, J. W. (2009). Local well posedness, asymptotic behavoir and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time. Transactions of the American Mathematical Society, 361( 5), 2567-2586. doi:10.1090/s0002-9947-08-04789-2 -
NLM
Carvalho AN de, Cholewa JW. Local well posedness, asymptotic behavoir and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time [Internet]. Transactions of the American Mathematical Society. 2009 ; 361( 5): 2567-2586.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1090/s0002-9947-08-04789-2 -
Vancouver
Carvalho AN de, Cholewa JW. Local well posedness, asymptotic behavoir and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time [Internet]. Transactions of the American Mathematical Society. 2009 ; 361( 5): 2567-2586.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1090/s0002-9947-08-04789-2 - Navier-Stokes equations: a millennium prize problem from the point of view of continuation of solutions
- Asymptotic behaviour of nonlinear parabolic equations with monotone principal part
- Abstract parabolic problems in ordered Banach spaces
- Padrões em problemas parabólicos
- Structural stability of uniform attractors under non-autonomous perturbations
- Robustness of dynamically gradient multivalued dynamical systems
- Non-autonomous Morse-smale dynamical systems: structural stability under non-autonomous perturbations
- Structure and bifurcation of pullback attractors in a non-autonomous Chafee-Infante equation
- Finite-dimensional global attractors in Banach spaces
- An estimate on the fractal dimension of attractors of gradient-like dynamical systems
Informações sobre o DOI: 10.1090/s0002-9947-08-04789-2 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
