Weak topological conjugacy via character of recurrence on impulsive dynamical systems (2019)
- Authors:
- Autor USP: BONOTTO, EVERALDO DE MELLO - ICMC
- Unidade: ICMC
- DOI: 10.1007/s00574-018-0104-x
- Subjects: SISTEMAS DINÂMICOS; EQUAÇÕES DIFERENCIAIS FUNCIONAIS; TOPOLOGIA; SISTEMAS DISCRETOS
- Keywords: Topological conjugacy; Character of recurrence
- Language: Inglês
- Imprenta:
- Publisher place: Heidelberg, Berlin
- Date published: 2019
- Source:
- Título: Bulletin of the Brazilian Mathematical Society : New Series
- ISSN: 1678-7544
- Volume/Número/Paginação/Ano: v. 50, n. 2, p. 399-417, Jun. 2019
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
BONOTTO, Everaldo de Mello e DEMUNER, D. P. e SOUTO, G. M. Weak topological conjugacy via character of recurrence on impulsive dynamical systems. Bulletin of the Brazilian Mathematical Society : New Series, v. 50, n. Ju 2019, p. 399-417, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00574-018-0104-x. Acesso em: 28 dez. 2025. -
APA
Bonotto, E. de M., Demuner, D. P., & Souto, G. M. (2019). Weak topological conjugacy via character of recurrence on impulsive dynamical systems. Bulletin of the Brazilian Mathematical Society : New Series, 50( Ju 2019), 399-417. doi:10.1007/s00574-018-0104-x -
NLM
Bonotto E de M, Demuner DP, Souto GM. Weak topological conjugacy via character of recurrence on impulsive dynamical systems [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2019 ; 50( Ju 2019): 399-417.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1007/s00574-018-0104-x -
Vancouver
Bonotto E de M, Demuner DP, Souto GM. Weak topological conjugacy via character of recurrence on impulsive dynamical systems [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2019 ; 50( Ju 2019): 399-417.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1007/s00574-018-0104-x - A equação de Black-Scholes com ação impulsiva
- Global mild solutions for a Nonautonomous 2D Navier–Stokes equations with impulses at variable times
- Impulsive surfaces on dynamical systems
- On the Lyapunov stability theory for impulsive dynamical systems
- Weak almost periodic motions, minimality and stability in impulsive semidynamical systems
- Schur decomposition for unbounded matrix operator connected with fractional powers and semigroup generation
- Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system
- Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems
- Convergence for non-automous semidynamical systems with impulses
- Method of Lyapunov functions for impulsive semidynamical systems
Informações sobre o DOI: 10.1007/s00574-018-0104-x (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
