Exportar registro bibliográfico


Metrics:

Global mild solutions for a Nonautonomous 2D Navier–Stokes equations with impulses at variable times (2018)

  • Authors:
  • Autor USP: BONOTTO, EVERALDO DE MELLO - ICMC
  • Unidade: ICMC
  • DOI: 10.1007/s00021-017-0345-2
  • Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS; EQUAÇÕES INTEGRAIS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s00021-017-0345-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BONOTTO, Everaldo de Mello; MESQUITA, J. G.; SILVA, R. P. Global mild solutions for a Nonautonomous 2D Navier–Stokes equations with impulses at variable times. Journal of Mathematical Fluid Mechanics, Cham, Springer International Publishing, v. 20, n. Ju 2018, p. 801-818, 2018. Disponível em: < http://dx.doi.org/10.1007/s00021-017-0345-2 > DOI: 10.1007/s00021-017-0345-2.
    • APA

      Bonotto, E. de M., Mesquita, J. G., & Silva, R. P. (2018). Global mild solutions for a Nonautonomous 2D Navier–Stokes equations with impulses at variable times. Journal of Mathematical Fluid Mechanics, 20( Ju 2018), 801-818. doi:10.1007/s00021-017-0345-2
    • NLM

      Bonotto E de M, Mesquita JG, Silva RP. Global mild solutions for a Nonautonomous 2D Navier–Stokes equations with impulses at variable times [Internet]. Journal of Mathematical Fluid Mechanics. 2018 ; 20( Ju 2018): 801-818.Available from: http://dx.doi.org/10.1007/s00021-017-0345-2
    • Vancouver

      Bonotto E de M, Mesquita JG, Silva RP. Global mild solutions for a Nonautonomous 2D Navier–Stokes equations with impulses at variable times [Internet]. Journal of Mathematical Fluid Mechanics. 2018 ; 20( Ju 2018): 801-818.Available from: http://dx.doi.org/10.1007/s00021-017-0345-2

    Referências citadas na obra
    Boldrini, J.L., Miranda, L.H., Planas, G.: On singular Navier–Stokes equations and irreversible phase transitions. Commun. Pure Appl. Anal. 11, 2055–2078 (2012)
    Bonotto, E.M., Demuner, D.P.: Autonomous dissipative semidynamical systems with impulses. Topol. Methods Nonlinear Anal. 41(1), 1–38 (2013)
    Bonotto, E.M., Demuner, D.P.: Attractors of impulsive dissipative semidynamical systems. Bull. Sci. Math. 137, 617–642 (2013)
    Bonotto, E.M., Bortolan, M.C., Carvalho, A.N., Czaja, R.: Global attractors for impulsive dynamical systems—a precompact approach. J. Differ. Equ. 259, 2602–2625 (2015)
    Bonotto, E.M., Bortolan, M.C., Caraballo, T., Collegari, R.: Impulsive non-autonomous dynamical systems and impulsive cocycle attractors. Math. Methods Appl. Sci. 40, 1095–1113 (2017)
    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)
    Carvalho, A., Langa, J.A., Robinson, J.: Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems. Springer, Berlin (2012)
    Cheban, D.N.: Global attractors of non-autonomous dissipative dynamical systems. Interdiscip. Math. Sci., vol. 1, World Scientific Publishing, Hackensack, NJ, (2004)
    Ciesielski, K.: On semicontinuity in impulsive dynamical systems. Bull. Polish Acad. Sci. Math. 52, 71–80 (2004)
    Constantin, P., Foias, C.: Navier–Stokes Equations, Chicago Lectures in Mathematics, p. x+190 pp. Univesity of Chicago Press, Chicago (1988)
    Cortés, J.: Discontinuous dynamical systems: a tutorial on solutions, nonsmooth analysis, and stability. IEEE Control Syst. Mag. 28(3), 36–73 (2008)
    Davis, M.H.A., Guo, X., Wu, G.: Impulse control of multidimensional jump diffusions. SIAM J. Control Optim. 48(8), 5276–5293 (2010)
    Doering, C.R., Gibbon, J.D.: Applied Analysis of the Navier–Stokes Equations, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1995)
    Feroe, J.A.: Existence and stability of multiple impulse solutions of a nerve equation. SIAM J. Appl. Math. 42(2), 235–246 (1982)
    Fujiwara, D., Morimoto, H.: An $$L_r-$$ L r - theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. v. 352, 685–700 (1977)
    García-Luengo, J., Marín-Rubio, P., Real, J.: Pullback attractors for nonautonomous 2D Navier–Stokes equations for minimally regular forcing. Discrete Contin. Dyn. Syst. 34(1), 203–227 (2014)
    García-Luengo, J., Marín-Rubio, P., Real, J.: Regularity of pullback attractors and attraction in $$H^1$$ H 1 in arbitrarily large finite intervals for 2D Navier–Stokes equations with infinite delay. Discrete Contin. Dyn. Syst. 34(1), 181–201 (2014)
    García-Luengo, J., Marín-Rubio, P., Real, J.: Pullback attractors in V for non-autonomous 2D-Navier–Stokes equations and their tempered behavior. J. Differ. Equ. 252, 4333–4356 (2012)
    Giga, Y.: Analyticity of semigroup generated by the Stokes operator in $$L_r$$ L r spaces. Math. Z. 178, 297–329 (1981)
    Hönig, C.S.: Volterra Stieltjes-Integral Equations. North-Holland Publishing Company, Amsterdam (1975)
    Hong, Jeong Mo, Kim, Chang Hun: Discontinuous fluids. ACM Trans. Graph. 24, 915–920 (2005)
    Jiu, Q., Wang, Y., Xin, Z.: Global well-posedness of the Cauchy problem of two-dimensional compressible Navier–Stokes equations in weighted spaces. J. Differ. Equ. 255, 351–404 (2013)
    Robinson, J.C.: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001)
    Rosa, R.: The global attractor for the 2D Navier–Stokes flow on some unbounded domains. Nonlinear Anal. 32(1), 71–85 (1998)
    Sell, G.R.: Topological Dynamics and Ordinary Differential Equations, Van Nostrand/Reinhold Math. Stud., No. 33, Van Nostrand/Reinhold Co., London, (1971)
    Temam, R.: Navier–Stokes equations Theory and Numerical Analysis. North-Holland, Amsterdam (1977)
    Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics. 2nd ed., Appl. Math. Sci., vol. 68, Springer-Verlag, New York (1997), xxii+648 pp
    von Wahl, W.: Equations of Navier–Stokes and Abstract Parabolic Equations. Vieweg, Braun-schweig/Wiesbaden (1985)
    Yang J., Zhao, M.: Complex behavior in a fish algae consumption model with impulsive control strategy. Discrete Dyn. Nat. Soc. Article ID 163541, (2011), 17 pp
    Zhao, L., Chen, L., Zhang, Q.: The geometrical analysis of a predator-prey model with two state impulses. Math. Biosci. 238(2), 55–64 (2012)

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020