Method of Lyapunov functions for impulsive semidynamical systems (2014)
- Authors:
- Autor USP: BONOTTO, EVERALDO DE MELLO - ICMC
- Unidade: ICMC
- Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS; EQUAÇÕES DIFERENCIAIS ORDINÁRIAS; EQUAÇÕES INTEGRAIS
- Language: Inglês
- Imprenta:
- Publisher: ICMC-USP
- Publisher place: São Carlos
- Date published: 2014
- Source:
- Título: Abstracts
- Conference titles: ICMC Summer Meeting on Differential Equations
-
ABNT
FERREIRA, Jaqueline da Costa e BONOTTO, Everaldo de Mello. Method of Lyapunov functions for impulsive semidynamical systems. 2014, Anais.. São Carlos: ICMC-USP, 2014. Disponível em: http://summer.icmc.usp.br/summers/summer14/pg_abstract.php. Acesso em: 28 dez. 2025. -
APA
Ferreira, J. da C., & Bonotto, E. de M. (2014). Method of Lyapunov functions for impulsive semidynamical systems. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer14/pg_abstract.php -
NLM
Ferreira J da C, Bonotto E de M. Method of Lyapunov functions for impulsive semidynamical systems [Internet]. Abstracts. 2014 ;[citado 2025 dez. 28 ] Available from: http://summer.icmc.usp.br/summers/summer14/pg_abstract.php -
Vancouver
Ferreira J da C, Bonotto E de M. Method of Lyapunov functions for impulsive semidynamical systems [Internet]. Abstracts. 2014 ;[citado 2025 dez. 28 ] Available from: http://summer.icmc.usp.br/summers/summer14/pg_abstract.php - A equação de Black-Scholes com ação impulsiva
- Global mild solutions for a Nonautonomous 2D Navier–Stokes equations with impulses at variable times
- Impulsive surfaces on dynamical systems
- On the Lyapunov stability theory for impulsive dynamical systems
- Weak almost periodic motions, minimality and stability in impulsive semidynamical systems
- Schur decomposition for unbounded matrix operator connected with fractional powers and semigroup generation
- Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system
- Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems
- Convergence for non-automous semidynamical systems with impulses
- Sistemas semidinâmicos dissipativos com impulsos
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
