Converse Lyapunov theorems for measure functional differential equations (2021)
- Authors:
- USP affiliated authors: FEDERSON, MARCIA CRISTINA ANDERSON BRAZ - ICMC ; SILVA, FERNANDA ANDRADE DA - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.jde.2021.02.060
- Subjects: ANÁLISE REAL; EQUAÇÕES DIFERENCIAIS FUNCIONAIS; DINÂMICA TOPOLÓGICA; ESPAÇOS DE BANACH
- Keywords: Regular stability; Generalized ordinary differential equations; Banach spaces; Kurzweil integral
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Differential Equations
- ISSN: 0022-0396
- Volume/Número/Paginação/Ano: v. 286, p. 1-46, June 2021
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
- Licença: publisher-specific-oa
-
ABNT
SILVA, Fernanda Andrade da et al. Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, v. 286, p. 1-46, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.02.060. Acesso em: 27 dez. 2025. -
APA
Silva, F. A. da, Federson, M., Grau, R., & Toon, E. (2021). Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, 286, 1-46. doi:10.1016/j.jde.2021.02.060 -
NLM
Silva FA da, Federson M, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.02.060 -
Vancouver
Silva FA da, Federson M, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.02.060 - Existence, uniqueness, variation-of-constant formula and controllability for linear dynamic equations with Perron Δ-integrals
- Stability, boundedness and controllability of solutions of measure functional differential equations
- Stability for generalized stochastic equations
- Stability of Nicholson's blowflies equation
- Stability for nonlinear generalized ODEs and for retarded Volterra-Stieltjes integral equations and control theory for these equations and for dynamic equations on time scale
- Lyapunov techniques for integral equations in the sense of Kurzweil
- Controlabilidade e observabilidade em equações diferenciais ordinárias generalizadas e aplicações
- Non-oscillation criterion for impulsive differential equations with delay
- Lyapunov stability for measure differential equations and dynamic equations on time scales
- Regular stability for generalized ODE
Informações sobre o DOI: 10.1016/j.jde.2021.02.060 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3023533.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
