Filtros : "Journal of Chemical Information and Modeling" "Financiamento FAPESP" Removido: "Brasil" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQ

    Assuntos: BIOQUÍMICA INORGÂNICA, MOLÉCULA, PEPTÍDEOS, PROTEÍNAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMILO, Sofia Rodrigues Guedes e ARANTES, Guilherme Menegon. Flexibility and hydration of the Qo site determine multiple pathways for proton transfer in cytochrome bc1. Journal of Chemical Information and Modeling, v. 65, n. 12, p. 6184-6197, 2025Tradução . . Disponível em: https://dx.doi.org/10.1021/acs.jcim.5c00655. Acesso em: 17 nov. 2025.
    • APA

      Camilo, S. R. G., & Arantes, G. M. (2025). Flexibility and hydration of the Qo site determine multiple pathways for proton transfer in cytochrome bc1. Journal of Chemical Information and Modeling, 65( 12), 6184-6197. doi:10.1021/acs.jcim.5c00655
    • NLM

      Camilo SRG, Arantes GM. Flexibility and hydration of the Qo site determine multiple pathways for proton transfer in cytochrome bc1 [Internet]. Journal of Chemical Information and Modeling. 2025 ; 65( 12): 6184-6197.[citado 2025 nov. 17 ] Available from: https://dx.doi.org/10.1021/acs.jcim.5c00655
    • Vancouver

      Camilo SRG, Arantes GM. Flexibility and hydration of the Qo site determine multiple pathways for proton transfer in cytochrome bc1 [Internet]. Journal of Chemical Information and Modeling. 2025 ; 65( 12): 6184-6197.[citado 2025 nov. 17 ] Available from: https://dx.doi.org/10.1021/acs.jcim.5c00655
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQ

    Assuntos: MECÂNICA QUÂNTICA, OXIDAÇÃO, REDUÇÃO

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARANTES, Guilherme Menegon. Redox activated proton transfer through a redundant network in the Qo site of Cytochrome bc1. Journal of Chemical Information and Modeling, v. 65, n. 5, p. 2660−2669, 2025Tradução . . Disponível em: https://dx.doi.org/10.1021/acs.jcim.4c02361. Acesso em: 17 nov. 2025.
    • APA

      Arantes, G. M. (2025). Redox activated proton transfer through a redundant network in the Qo site of Cytochrome bc1. Journal of Chemical Information and Modeling, 65( 5), 2660−2669. doi:10.1021/acs.jcim.4c02361
    • NLM

      Arantes GM. Redox activated proton transfer through a redundant network in the Qo site of Cytochrome bc1 [Internet]. Journal of Chemical Information and Modeling. 2025 ; 65( 5): 2660−2669.[citado 2025 nov. 17 ] Available from: https://dx.doi.org/10.1021/acs.jcim.4c02361
    • Vancouver

      Arantes GM. Redox activated proton transfer through a redundant network in the Qo site of Cytochrome bc1 [Internet]. Journal of Chemical Information and Modeling. 2025 ; 65( 5): 2660−2669.[citado 2025 nov. 17 ] Available from: https://dx.doi.org/10.1021/acs.jcim.4c02361
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IFSC

    Assuntos: INTELIGÊNCIA ARTIFICIAL, MODELAGEM MOLECULAR, MOLÉCULA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NOGUEIRA, Victor Henrique Rabesquine et al. Fuzz testing molecular representation using deep variational anomaly generation. Journal of Chemical Information and Modeling, v. 65, n. 4, p. 1911-1927 + supporting information, 2025Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.4c01876. Acesso em: 17 nov. 2025.
    • APA

      Nogueira, V. H. R., Sharma, R., Guido, R. V. C., & Keiser, M. J. (2025). Fuzz testing molecular representation using deep variational anomaly generation. Journal of Chemical Information and Modeling, 65( 4), 1911-1927 + supporting information. doi:10.1021/acs.jcim.4c01876
    • NLM

      Nogueira VHR, Sharma R, Guido RVC, Keiser MJ. Fuzz testing molecular representation using deep variational anomaly generation [Internet]. Journal of Chemical Information and Modeling. 2025 ; 65( 4): 1911-1927 + supporting information.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.4c01876
    • Vancouver

      Nogueira VHR, Sharma R, Guido RVC, Keiser MJ. Fuzz testing molecular representation using deep variational anomaly generation [Internet]. Journal of Chemical Information and Modeling. 2025 ; 65( 4): 1911-1927 + supporting information.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.4c01876
  • Fonte: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Assuntos: APRENDIZADO COMPUTACIONAL, SIMULAÇÃO, MODELAGEM MOLECULAR, NANOPARTÍCULAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KARMAKAR, Tarak e SOARES, Thereza Amélia e MERZ JR, Kenneth M. Enhancing coarse-grained models through machine learning. [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.4c00537. Acesso em: 17 nov. 2025. , 2024
    • APA

      Karmakar, T., Soares, T. A., & Merz Jr, K. M. (2024). Enhancing coarse-grained models through machine learning. [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.4c00537
    • NLM

      Karmakar T, Soares TA, Merz Jr KM. Enhancing coarse-grained models through machine learning. [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2024 ; 64( 8): 2931-2932.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.4c00537
    • Vancouver

      Karmakar T, Soares TA, Merz Jr KM. Enhancing coarse-grained models through machine learning. [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2024 ; 64( 8): 2931-2932.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.4c00537
  • Fonte: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Assuntos: QUÍMICA, REPLICAÇÃO DO DNA, GENÔMICA, ÁCIDOS NUCLEICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PALERMO, Giulia e SOARES, Thereza A. Editing DNA and RNA through Computations [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.3c01824. Acesso em: 17 nov. 2025. , 2023
    • APA

      Palermo, G., & Soares, T. A. (2023). Editing DNA and RNA through Computations [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.3c01824
    • NLM

      Palermo G, Soares TA. Editing DNA and RNA through Computations [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63( 24): 7603-7604.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.3c01824
    • Vancouver

      Palermo G, Soares TA. Editing DNA and RNA through Computations [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63( 24): 7603-7604.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.3c01824
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQ

    Assuntos: PROTEÍNAS, PEPTÍDEOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CURTOLO, Felipe e ARANTES, Guilherme Menegon. Dissecting reaction mechanisms and catalytic contributions in Flavoprotein fumarate Reductases. Journal of Chemical Information and Modeling, v. 63, p. 3510−3520, 2023Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.3c00292. Acesso em: 17 nov. 2025.
    • APA

      Curtolo, F., & Arantes, G. M. (2023). Dissecting reaction mechanisms and catalytic contributions in Flavoprotein fumarate Reductases. Journal of Chemical Information and Modeling, 63, 3510−3520. doi:10.1021/acs.jcim.3c00292
    • NLM

      Curtolo F, Arantes GM. Dissecting reaction mechanisms and catalytic contributions in Flavoprotein fumarate Reductases [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63 3510−3520.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.3c00292
    • Vancouver

      Curtolo F, Arantes GM. Dissecting reaction mechanisms and catalytic contributions in Flavoprotein fumarate Reductases [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63 3510−3520.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.3c00292
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQ

    Assuntos: ESTRUTURA QUÍMICA, PROTEÍNAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIVIANI, Lucas Gasparello et al. Molecular dynamics simulations of the human ecto-5′-nucleotidase (h-ecto-5′-NT, CD73): insights into protein flexibility and binding site dynamics. Journal of Chemical Information and Modeling, v. 63, n. 15, p. 4691-4707, 2023Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.3c01068. Acesso em: 17 nov. 2025.
    • APA

      Viviani, L. G., Kokh, D. B., Wade, R. C., & Amaral, A. T. do. (2023). Molecular dynamics simulations of the human ecto-5′-nucleotidase (h-ecto-5′-NT, CD73): insights into protein flexibility and binding site dynamics. Journal of Chemical Information and Modeling, 63( 15), 4691-4707. doi:10.1021/acs.jcim.3c01068
    • NLM

      Viviani LG, Kokh DB, Wade RC, Amaral AT do. Molecular dynamics simulations of the human ecto-5′-nucleotidase (h-ecto-5′-NT, CD73): insights into protein flexibility and binding site dynamics [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63( 15): 4691-4707.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.3c01068
    • Vancouver

      Viviani LG, Kokh DB, Wade RC, Amaral AT do. Molecular dynamics simulations of the human ecto-5′-nucleotidase (h-ecto-5′-NT, CD73): insights into protein flexibility and binding site dynamics [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63( 15): 4691-4707.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.3c01068
  • Fonte: Journal of Chemical Information and Modeling. Unidades: IFSC, ICMC

    Assuntos: ALGORITMOS, APRENDIZADO COMPUTACIONAL, GENÔMICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA JUNIOR, Osvaldo Novais de et al. Artificial intelligence agents for materials sciences. Journal of Chemical Information and Modeling, v. 63, n. 24, p. 7605-7609, 2023Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.3c01778. Acesso em: 17 nov. 2025.
    • APA

      Oliveira Junior, O. N. de, Christino, L. M. F., Oliveira, M. C. F. de, & Paulovich, F. V. (2023). Artificial intelligence agents for materials sciences. Journal of Chemical Information and Modeling, 63( 24), 7605-7609. doi:10.1021/acs.jcim.3c01778
    • NLM

      Oliveira Junior ON de, Christino LMF, Oliveira MCF de, Paulovich FV. Artificial intelligence agents for materials sciences [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63( 24): 7605-7609.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.3c01778
    • Vancouver

      Oliveira Junior ON de, Christino LMF, Oliveira MCF de, Paulovich FV. Artificial intelligence agents for materials sciences [Internet]. Journal of Chemical Information and Modeling. 2023 ; 63( 24): 7605-7609.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.3c01778
  • Fonte: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Assuntos: PRECONCEITO, PESQUISA CIENTÍFICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASCELLA, Michele e SILVA, Thereza Amélia Soares da. Bias amplification in gender, gender identity, and geographical affiliation. Journal of Chemical Information and Modeling, v. 62, n. 24, p. 6297-6301, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00533. Acesso em: 17 nov. 2025.
    • APA

      Cascella, M., & Silva, T. A. S. da. (2022). Bias amplification in gender, gender identity, and geographical affiliation. Journal of Chemical Information and Modeling, 62( 24), 6297-6301. doi:10.1021/acs.jcim.2c00533
    • NLM

      Cascella M, Silva TAS da. Bias amplification in gender, gender identity, and geographical affiliation [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 24): 6297-6301.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.2c00533
    • Vancouver

      Cascella M, Silva TAS da. Bias amplification in gender, gender identity, and geographical affiliation [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 24): 6297-6301.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.2c00533
  • Fonte: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Assuntos: APRENDIZADO COMPUTACIONAL, MODELOS MATEMÁTICOS, ESTRUTURA MOLECULAR (QUÍMICA TEÓRICA)

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOARES, Thereza A. et al. The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1021/acs.jcim.2c01422. Acesso em: 17 nov. 2025. , 2022
    • APA

      Soares, T. A., Alves, A. F. N., Mazzolari, A., Ruggiu, F., Wei, G. -W., & Merz, K. (2022). The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial]. Journal of Chemical Information and Modeling. Washington: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.1021/acs.jcim.2c01422
    • NLM

      Soares TA, Alves AFN, Mazzolari A, Ruggiu F, Wei G-W, Merz K. The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 22): 5317-5320.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.2c01422
    • Vancouver

      Soares TA, Alves AFN, Mazzolari A, Ruggiu F, Wei G-W, Merz K. The (Re)-evolution of Quantitative Structure–Activity Relationship (QSAR) studies propelled by the surge of machine learning methods [Editorial] [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 22): 5317-5320.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.2c01422
  • Fonte: Journal of Chemical Information and Modeling. Unidades: FCFRP, Interunidades em Bioinformática

    Assuntos: ZIKA VÍRUS, VIRULÊNCIA, FLAVIVIRUS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POVEDA CUEVAS, Sergio Alejandro e SILVA, Fernando Luís Barroso da e ETCHEBEST, Catherine. How the strain origin of Zika Virus NS1 protein impacts its dynamics and implications to their differential virulence. Journal of Chemical Information and Modeling, v. 61, n. 3, p. 1516-1530, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.0c01377. Acesso em: 17 nov. 2025.
    • APA

      Poveda Cuevas, S. A., Silva, F. L. B. da, & Etchebest, C. (2021). How the strain origin of Zika Virus NS1 protein impacts its dynamics and implications to their differential virulence. Journal of Chemical Information and Modeling, 61( 3), 1516-1530. doi:10.1021/acs.jcim.0c01377
    • NLM

      Poveda Cuevas SA, Silva FLB da, Etchebest C. How the strain origin of Zika Virus NS1 protein impacts its dynamics and implications to their differential virulence [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 3): 1516-1530.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.0c01377
    • Vancouver

      Poveda Cuevas SA, Silva FLB da, Etchebest C. How the strain origin of Zika Virus NS1 protein impacts its dynamics and implications to their differential virulence [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 3): 1516-1530.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.0c01377
  • Fonte: Journal of Chemical Information and Modeling. Unidades: IQ, IFSC

    Assuntos: CRISTALOGRAFIA, PEPTÍDEOS, PROTEÍNAS, LIGANTES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VELDMAN, Wayde et al. Differences in gluco and galacto substrate-binding interactions in a dual 6Pβ-Glucosidase/6Pβ-Galactosidase glycoside hydrolase 1 enzyme from Bacillus licheniformis. Journal of Chemical Information and Modeling, v. 61, n. 9, p. 4554-4570, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00413. Acesso em: 17 nov. 2025.
    • APA

      Veldman, W., Liberato, M. V., Souza, V. P., Almeida, V. M., Marana, S. R., Bishop, O. T., & Polikarpov, I. (2021). Differences in gluco and galacto substrate-binding interactions in a dual 6Pβ-Glucosidase/6Pβ-Galactosidase glycoside hydrolase 1 enzyme from Bacillus licheniformis. Journal of Chemical Information and Modeling, 61( 9), 4554-4570. doi:10.1021/acs.jcim.1c00413
    • NLM

      Veldman W, Liberato MV, Souza VP, Almeida VM, Marana SR, Bishop OT, Polikarpov I. Differences in gluco and galacto substrate-binding interactions in a dual 6Pβ-Glucosidase/6Pβ-Galactosidase glycoside hydrolase 1 enzyme from Bacillus licheniformis [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 9): 4554-4570.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.1c00413
    • Vancouver

      Veldman W, Liberato MV, Souza VP, Almeida VM, Marana SR, Bishop OT, Polikarpov I. Differences in gluco and galacto substrate-binding interactions in a dual 6Pβ-Glucosidase/6Pβ-Galactosidase glycoside hydrolase 1 enzyme from Bacillus licheniformis [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 9): 4554-4570.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.1c00413
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IFSC

    Assuntos: PLANEJAMENTO DE FÁRMACOS, COMPUTAÇÃO APLICADA, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BATRA, Kushal et al. Quantum machine learning algorithms for drug discovery applications. Journal of Chemical Information and Modeling, v. 61, n. 6, p. 2641-2647, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00166. Acesso em: 17 nov. 2025.
    • APA

      Batra, K., Zorn, K. M., Foil, D. H., Minerali, E., Gawriljuk, V. O., Lane, T. R., & Ekins, S. (2021). Quantum machine learning algorithms for drug discovery applications. Journal of Chemical Information and Modeling, 61( 6), 2641-2647. doi:10.1021/acs.jcim.1c00166
    • NLM

      Batra K, Zorn KM, Foil DH, Minerali E, Gawriljuk VO, Lane TR, Ekins S. Quantum machine learning algorithms for drug discovery applications [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 6): 2641-2647.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.1c00166
    • Vancouver

      Batra K, Zorn KM, Foil DH, Minerali E, Gawriljuk VO, Lane TR, Ekins S. Quantum machine learning algorithms for drug discovery applications [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 6): 2641-2647.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.1c00166
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IFSC

    Assuntos: FEBRE AMARELA, APRENDIZADO COMPUTACIONAL, PLANEJAMENTO DE FÁRMACOS, ANTIVIRAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Victor Gawriljuk Ferraro et al. Development of machine learning models and the discovery of a new antiviral compound against yellow fever virus. Journal of Chemical Information and Modeling, v. 61, n. 8, p. 3804-3813, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00460. Acesso em: 17 nov. 2025.
    • APA

      Oliveira, V. G. F., Foil, D. H., Puhl, A. C., Zorn, K. M., Lane, T. R., Riabova, O., et al. (2021). Development of machine learning models and the discovery of a new antiviral compound against yellow fever virus. Journal of Chemical Information and Modeling, 61( 8), 3804-3813. doi:10.1021/acs.jcim.1c00460
    • NLM

      Oliveira VGF, Foil DH, Puhl AC, Zorn KM, Lane TR, Riabova O, Makarov V, Godoy AS de, Oliva G, Ekins S. Development of machine learning models and the discovery of a new antiviral compound against yellow fever virus [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 8): 3804-3813.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.1c00460
    • Vancouver

      Oliveira VGF, Foil DH, Puhl AC, Zorn KM, Lane TR, Riabova O, Makarov V, Godoy AS de, Oliva G, Ekins S. Development of machine learning models and the discovery of a new antiviral compound against yellow fever virus [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 8): 3804-3813.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.1c00460
  • Fonte: Journal of Chemical Information and Modeling. Unidades: IQSC, IFSC

    Assunto: METAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAIS, Felipe Orlando e ANDRIANI, Karla Furtado e SILVA, Juarez Lopes Ferreira da. Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k‑means clustering algorithm. Journal of Chemical Information and Modeling, v. 61, n. 7, p. 3411-3420, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00253. Acesso em: 17 nov. 2025.
    • APA

      Morais, F. O., Andriani, K. F., & Silva, J. L. F. da. (2021). Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k‑means clustering algorithm. Journal of Chemical Information and Modeling, 61( 7), 3411-3420. doi:10.1021/acs.jcim.1c00253
    • NLM

      Morais FO, Andriani KF, Silva JLF da. Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k‑means clustering algorithm [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 7): 3411-3420.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.1c00253
    • Vancouver

      Morais FO, Andriani KF, Silva JLF da. Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k‑means clustering algorithm [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 7): 3411-3420.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.1c00253
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: MEDICAMENTO, ENZIMAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONATTO, Vinícius et al. Predicting the Relative Binding Affinity for Reversible Covalent Inhibitors by Free Energy Perturbation Calculations. Journal of Chemical Information and Modeling, v. 61, p. 4733−4744, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00515. Acesso em: 17 nov. 2025.
    • APA

      Bonatto, V., Shamim, A., Rocho, F. dos R., Leitão, A., Luque, F. J., & Montanari, C. A. (2021). Predicting the Relative Binding Affinity for Reversible Covalent Inhibitors by Free Energy Perturbation Calculations. Journal of Chemical Information and Modeling, 61, 4733−4744. doi:10.1021/acs.jcim.1c00515
    • NLM

      Bonatto V, Shamim A, Rocho F dos R, Leitão A, Luque FJ, Montanari CA. Predicting the Relative Binding Affinity for Reversible Covalent Inhibitors by Free Energy Perturbation Calculations [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 4733−4744.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.1c00515
    • Vancouver

      Bonatto V, Shamim A, Rocho F dos R, Leitão A, Luque FJ, Montanari CA. Predicting the Relative Binding Affinity for Reversible Covalent Inhibitors by Free Energy Perturbation Calculations [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 4733−4744.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.1c00515
  • Fonte: Journal of Chemical Information and Modeling. Unidade: FCFRP

    Assuntos: CITOPLASMA, RNA, ESCHERICHIA COLI

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOT, Leandro Oliveira e BASHARDANESH, Zahedeh e VAN DER SPOEL, David. Making soup: preparing and validating models of the bacterial cytoplasm for molecular simulation. Journal of Chemical Information and Modeling, v. 60, n. 1, p. 322-331, 2020Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.9b00971. Acesso em: 17 nov. 2025.
    • APA

      Bortot, L. O., Bashardanesh, Z., & van der Spoel, D. (2020). Making soup: preparing and validating models of the bacterial cytoplasm for molecular simulation. Journal of Chemical Information and Modeling, 60( 1), 322-331. doi:10.1021/acs.jcim.9b00971
    • NLM

      Bortot LO, Bashardanesh Z, van der Spoel D. Making soup: preparing and validating models of the bacterial cytoplasm for molecular simulation [Internet]. Journal of Chemical Information and Modeling. 2020 ;60( 1): 322-331.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.9b00971
    • Vancouver

      Bortot LO, Bashardanesh Z, van der Spoel D. Making soup: preparing and validating models of the bacterial cytoplasm for molecular simulation [Internet]. Journal of Chemical Information and Modeling. 2020 ;60( 1): 322-331.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.9b00971
  • Fonte: Journal of Chemical Information and Modeling. Unidade: FCFRP

    Assuntos: BIOMATERIAIS, MÉTODO DE MONTE CARLO, INSULINA, QUITOSANA, ELETROSTÁTICA, MACROMOLÉCULA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRUDKIN-SILVA, Cecilia et al. Combined experimental and molecular simulation study of insulin–chitosan complexation driven by electrostatic interactions. Journal of Chemical Information and Modeling, v. 60, n. 2, p. 854-865, 2020Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.9b00814. Acesso em: 17 nov. 2025.
    • APA

      Prudkin-Silva, C., Pérez, O. E., Martínez, K. D., & Silva, F. L. B. da. (2020). Combined experimental and molecular simulation study of insulin–chitosan complexation driven by electrostatic interactions. Journal of Chemical Information and Modeling, 60( 2), 854-865. doi:10.1021/acs.jcim.9b00814
    • NLM

      Prudkin-Silva C, Pérez OE, Martínez KD, Silva FLB da. Combined experimental and molecular simulation study of insulin–chitosan complexation driven by electrostatic interactions [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60( 2): 854-865.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.9b00814
    • Vancouver

      Prudkin-Silva C, Pérez OE, Martínez KD, Silva FLB da. Combined experimental and molecular simulation study of insulin–chitosan complexation driven by electrostatic interactions [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60( 2): 854-865.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.9b00814
  • Fonte: Journal of Chemical Information and Modeling. Unidade: FFCLRP

    Assuntos: LIPÍDEOS, ELETROSTÁTICA, MOLÉCULA, QUÍMICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Rafael Maglia de et al. Self-assembly of phosphocholine derivatives using the ELBA coarse-grained model: micelles, bicelles, and reverse micelles. Journal of Chemical Information and Modeling, v. 60, n. 2, p. 522-536, 2020Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.9b00790. Acesso em: 17 nov. 2025.
    • APA

      Souza, R. M. de, Ratochinski, R. H., Karttunen, M., & Dias, L. G. (2020). Self-assembly of phosphocholine derivatives using the ELBA coarse-grained model: micelles, bicelles, and reverse micelles. Journal of Chemical Information and Modeling, 60( 2), 522-536. doi:10.1021/acs.jcim.9b00790
    • NLM

      Souza RM de, Ratochinski RH, Karttunen M, Dias LG. Self-assembly of phosphocholine derivatives using the ELBA coarse-grained model: micelles, bicelles, and reverse micelles [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60( 2): 522-536.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.9b00790
    • Vancouver

      Souza RM de, Ratochinski RH, Karttunen M, Dias LG. Self-assembly of phosphocholine derivatives using the ELBA coarse-grained model: micelles, bicelles, and reverse micelles [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60( 2): 522-536.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.9b00790
  • Fonte: Journal of Chemical Information and Modeling. Unidades: Interunidades em Bioinformática, FCFRP

    Assuntos: ANTÍGENOS, IMUNOLOGIA, FLAVIVIRUS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POVEDA CUEVAS, Sergio Alejandro e ETCHEBEST, Catherine e SILVA, Fernando Luís Barroso da. Identification of electrostatic epitopes in flavivirus by computer simulations: the PROCEEDpKa method. Journal of Chemical Information and Modeling, v. 60, n. 2, p. 944-963, 2019Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.9b00895. Acesso em: 17 nov. 2025.
    • APA

      Poveda Cuevas, S. A., Etchebest, C., & Silva, F. L. B. da. (2019). Identification of electrostatic epitopes in flavivirus by computer simulations: the PROCEEDpKa method. Journal of Chemical Information and Modeling, 60( 2), 944-963. doi:10.1021/acs.jcim.9b00895
    • NLM

      Poveda Cuevas SA, Etchebest C, Silva FLB da. Identification of electrostatic epitopes in flavivirus by computer simulations: the PROCEEDpKa method [Internet]. Journal of Chemical Information and Modeling. 2019 ; 60( 2): 944-963.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.9b00895
    • Vancouver

      Poveda Cuevas SA, Etchebest C, Silva FLB da. Identification of electrostatic epitopes in flavivirus by computer simulations: the PROCEEDpKa method [Internet]. Journal of Chemical Information and Modeling. 2019 ; 60( 2): 944-963.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.9b00895

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025