Filtros : "Financiamento AEI-FEDER" "Indexado no MathSciNet" Removido: "Differential Equations and Dynamical Systems" Limpar

Filtros



Refine with date range


  • Source: Journal of Evolution Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DE NAVIER-STOKES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, MECÂNICA DOS FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations. Journal of Evolution Equations, v. 25, n. 1, p. 1-29, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00028-024-01039-5. Acesso em: 27 nov. 2025.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Marín-Rubio, P., & Valero, J. (2025). Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations. Journal of Evolution Equations, 25( 1), 1-29. doi:10.1007/s00028-024-01039-5
    • NLM

      Bortolan MC, Carvalho AN de, Marín-Rubio P, Valero J. Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations [Internet]. Journal of Evolution Equations. 2025 ; 25( 1): 1-29.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00028-024-01039-5
    • Vancouver

      Bortolan MC, Carvalho AN de, Marín-Rubio P, Valero J. Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations [Internet]. Journal of Evolution Equations. 2025 ; 25( 1): 1-29.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00028-024-01039-5
  • Source: Journal of Mathematical Biology. Unidade: ICMC

    Subjects: ESTABILIDADE DE SISTEMAS, ATRATORES, MÉTODOS NUMÉRICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. A theoretical and computational study of heteroclinic cycles in Lotka-Volterra systems. Journal of Mathematical Biology, v. 90, n. 3, p. 1-31, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00285-025-02190-4. Acesso em: 27 nov. 2025.
    • APA

      Bortolan, M. C., Kalita, P., Langa, J. A., & Moura, R. de O. (2025). A theoretical and computational study of heteroclinic cycles in Lotka-Volterra systems. Journal of Mathematical Biology, 90( 3), 1-31. doi:10.1007/s00285-025-02190-4
    • NLM

      Bortolan MC, Kalita P, Langa JA, Moura R de O. A theoretical and computational study of heteroclinic cycles in Lotka-Volterra systems [Internet]. Journal of Mathematical Biology. 2025 ; 90( 3): 1-31.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00285-025-02190-4
    • Vancouver

      Bortolan MC, Kalita P, Langa JA, Moura R de O. A theoretical and computational study of heteroclinic cycles in Lotka-Volterra systems [Internet]. Journal of Mathematical Biology. 2025 ; 90( 3): 1-31.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00285-025-02190-4
  • Source: Manuscripta Mathematica. Unidade: ICMC

    Subjects: GEOMETRIA GLOBAL, SUBVARIEDADES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAJCZER, Marcos e JIMENEZ, Miguel Ibieta e VLACHOS, Theodoros. Ricci pinched compact hypersurfaces in spheres. Manuscripta Mathematica, v. 176, n. 4, p. 1-12, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00229-025-01651-w. Acesso em: 27 nov. 2025.
    • APA

      Dajczer, M., Jimenez, M. I., & Vlachos, T. (2025). Ricci pinched compact hypersurfaces in spheres. Manuscripta Mathematica, 176( 4), 1-12. doi:10.1007/s00229-025-01651-w
    • NLM

      Dajczer M, Jimenez MI, Vlachos T. Ricci pinched compact hypersurfaces in spheres [Internet]. Manuscripta Mathematica. 2025 ; 176( 4): 1-12.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00229-025-01651-w
    • Vancouver

      Dajczer M, Jimenez MI, Vlachos T. Ricci pinched compact hypersurfaces in spheres [Internet]. Manuscripta Mathematica. 2025 ; 176( 4): 1-12.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00229-025-01651-w
  • Source: SIAM Journal on Mathematical Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DE NAVIER-STOKES, ATRATORES, EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, MECÂNICA DOS FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      XU, Jiaohui et al. Weak random attractors for the stochastic three-dimensional Navier-Stokes equations with multiplicative noise. SIAM Journal on Mathematical Analysis, v. 57, n. 4, p. 3718-3754, 2025Tradução . . Disponível em: https://doi.org/10.1137/24M1701794. Acesso em: 27 nov. 2025.
    • APA

      Xu, J., Caraballo, T., Carvalho, A. N. de, & Valero, J. (2025). Weak random attractors for the stochastic three-dimensional Navier-Stokes equations with multiplicative noise. SIAM Journal on Mathematical Analysis, 57( 4), 3718-3754. doi:10.1137/24M1701794
    • NLM

      Xu J, Caraballo T, Carvalho AN de, Valero J. Weak random attractors for the stochastic three-dimensional Navier-Stokes equations with multiplicative noise [Internet]. SIAM Journal on Mathematical Analysis. 2025 ; 57( 4): 3718-3754.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1137/24M1701794
    • Vancouver

      Xu J, Caraballo T, Carvalho AN de, Valero J. Weak random attractors for the stochastic three-dimensional Navier-Stokes equations with multiplicative noise [Internet]. SIAM Journal on Mathematical Analysis. 2025 ; 57( 4): 3718-3754.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1137/24M1701794
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de e JULIO PÉREZ, Yessica Yuliet. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory. Topological Methods in Nonlinear Analysis, v. 65, n. 2, p. 623-651, 2025Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2024.051. Acesso em: 27 nov. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, & Julio Pérez, Y. Y. (2025). Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory. Topological Methods in Nonlinear Analysis, 65( 2), 623-651. doi:10.12775/TMNA.2024.051
    • NLM

      Caraballo T, Carvalho AN de, Julio Pérez YY. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory [Internet]. Topological Methods in Nonlinear Analysis. 2025 ; 65( 2): 623-651.[citado 2025 nov. 27 ] Available from: https://doi.org/10.12775/TMNA.2024.051
    • Vancouver

      Caraballo T, Carvalho AN de, Julio Pérez YY. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory [Internet]. Topological Methods in Nonlinear Analysis. 2025 ; 65( 2): 623-651.[citado 2025 nov. 27 ] Available from: https://doi.org/10.12775/TMNA.2024.051
  • Source: Applied Mathematics and Optimization. Unidade: ICMC

    Subjects: EQUAÇÕES DE NAVIER-STOKES, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, MECÂNICA DOS FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de e JULIO PÉREZ, Yessica Yuliet. A delay nonlocal quasilinear Chafee-Infante problem: an approach via semigroup theory. Applied Mathematics and Optimization, v. 91, n. 2, p. 1-18, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00245-025-10241-x. Acesso em: 27 nov. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, & Julio Pérez, Y. Y. (2025). A delay nonlocal quasilinear Chafee-Infante problem: an approach via semigroup theory. Applied Mathematics and Optimization, 91( 2), 1-18. doi:10.1007/s00245-025-10241-x
    • NLM

      Caraballo T, Carvalho AN de, Julio Pérez YY. A delay nonlocal quasilinear Chafee-Infante problem: an approach via semigroup theory [Internet]. Applied Mathematics and Optimization. 2025 ; 91( 2): 1-18.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00245-025-10241-x
    • Vancouver

      Caraballo T, Carvalho AN de, Julio Pérez YY. A delay nonlocal quasilinear Chafee-Infante problem: an approach via semigroup theory [Internet]. Applied Mathematics and Optimization. 2025 ; 91( 2): 1-18.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00245-025-10241-x
  • Source: Mathematische Annalen. Unidade: ICMC

    Subjects: ATRATORES, ONDAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares et al. Existence, regularization and upper-semicontinuity of uniform attractors for a nonautonomous semilinear evolution equation of second order. Mathematische Annalen, v. 392, p. 5639–5688, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00208-025-03264-w. Acesso em: 27 nov. 2025.
    • APA

      Azevedo, V. T., Bonotto, E. de M., Cunha, A. C., & Nascimento, M. J. D. (2025). Existence, regularization and upper-semicontinuity of uniform attractors for a nonautonomous semilinear evolution equation of second order. Mathematische Annalen, 392, 5639–5688. doi:10.1007/s00208-025-03264-w
    • NLM

      Azevedo VT, Bonotto E de M, Cunha AC, Nascimento MJD. Existence, regularization and upper-semicontinuity of uniform attractors for a nonautonomous semilinear evolution equation of second order [Internet]. Mathematische Annalen. 2025 ; 392 5639–5688.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00208-025-03264-w
    • Vancouver

      Azevedo VT, Bonotto E de M, Cunha AC, Nascimento MJD. Existence, regularization and upper-semicontinuity of uniform attractors for a nonautonomous semilinear evolution equation of second order [Internet]. Mathematische Annalen. 2025 ; 392 5639–5688.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00208-025-03264-w
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SEMIGRUPOS NÃO LINEARES, EQUAÇÕES DE EVOLUÇÃO, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e BORTOLAN, Matheus Cheque e PEREIRA, Fabiano. Lyapunov functions for dynamically gradient impulsive systems. Journal of Differential Equations, v. 384, p. 279-325, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.12.008. Acesso em: 27 nov. 2025.
    • APA

      Bonotto, E. de M., Bortolan, M. C., & Pereira, F. (2024). Lyapunov functions for dynamically gradient impulsive systems. Journal of Differential Equations, 384, 279-325. doi:10.1016/j.jde.2023.12.008
    • NLM

      Bonotto E de M, Bortolan MC, Pereira F. Lyapunov functions for dynamically gradient impulsive systems [Internet]. Journal of Differential Equations. 2024 ; 384 279-325.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2023.12.008
    • Vancouver

      Bonotto E de M, Bortolan MC, Pereira F. Lyapunov functions for dynamically gradient impulsive systems [Internet]. Journal of Differential Equations. 2024 ; 384 279-325.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2023.12.008
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: ATRATORES, MECÂNICA DOS FLUÍDOS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio e MARÍN-RUBIO, Pedro e PLANAS, Gabriela. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, v. No 2024, p. 1-20, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2024.108204. Acesso em: 27 nov. 2025.
    • APA

      López-Lázaro, H., Marín-Rubio, P., & Planas, G. (2024). Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, No 2024, 1-20. doi:10.1016/j.cnsns.2024.108204
    • NLM

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
    • Vancouver

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BANAṤKIEWICZ, Jakub et al. Autonomous and non-autonomous unbounded attractors in evolutionary problems. Journal of Dynamics and Differential Equations, v. 36, n. 4, p. 3481-3534, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-022-10239-x. Acesso em: 27 nov. 2025.
    • APA

      Banaṥkiewicz, J., Carvalho, A. N. de, Garcia-Fuentes, J., & Kalita, P. (2024). Autonomous and non-autonomous unbounded attractors in evolutionary problems. Journal of Dynamics and Differential Equations, 36( 4), 3481-3534. doi:10.1007/s10884-022-10239-x
    • NLM

      Banaṥkiewicz J, Carvalho AN de, Garcia-Fuentes J, Kalita P. Autonomous and non-autonomous unbounded attractors in evolutionary problems [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 4): 3481-3534.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10884-022-10239-x
    • Vancouver

      Banaṥkiewicz J, Carvalho AN de, Garcia-Fuentes J, Kalita P. Autonomous and non-autonomous unbounded attractors in evolutionary problems [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36( 4): 3481-3534.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10884-022-10239-x
  • Source: International Journal of Bifurcation and Chaos. Unidade: FFCLRP

    Subjects: SISTEMAS DIFERENCIAIS, POLINÔMIOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e GONÇALVES, Luiz Fernando e LLIBRE, Jaume. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, v. 32, n. 16, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0218127422502455. Acesso em: 27 nov. 2025.
    • APA

      Carvalho, T. de, Gonçalves, L. F., & Llibre, J. (2022). On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials. International Journal of Bifurcation and Chaos, 32( 16). doi:10.1142/S0218127422502455
    • NLM

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2025 nov. 27 ] Available from: https://doi.org/10.1142/S0218127422502455
    • Vancouver

      Carvalho T de, Gonçalves LF, Llibre J. On the limit cycles of a class of discontinuous piecewise differential systems formed by two rigid centers governed by odd degree polynomials [Internet]. International Journal of Bifurcation and Chaos. 2022 ; 32( 16):[citado 2025 nov. 27 ] Available from: https://doi.org/10.1142/S0218127422502455

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025