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Abstract

We investigate the forward dynamics of a nonautonomous semilinear wave-type evo-
lution problem, which models propagation phenomena in nonlinear elastic rods and
ion-acoustic waves. We establish global well-posedness and prove the existence of
a family of uniform attractors under appropriate growth and dissipativity conditions.
Additionally, we demonstrate upper-semicontinuity in a suitable space and derive reg-
ularity results in a more refined space. Finally, we characterize the uniform attractor
through kernel sections for the problem under consideration.
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1 Introduction

In this paper, we investigate the forward dynamics of the following nonautonomous
semilinear second-order evolution problem

Uy — Au —n®)Auy — Auyy = f(u) + g(x,t), t>s, x €Q,
u=0, t=>s, x €09, (1.1)
u(s, x) = uo(x), u(s,x) =vo(x), x €8,

where Q is a bounded C? smooth domain in RN with N > 3 and n: R — (0, 00) is
a uniformly continuous function satisfying

O0<a <n(t)<ap <oo, tek 1.2)

The nonlinear term f: R — R is a locally Lipschitz function that satisfies the
following dissipativity condition:

lim sup ) < A, (1.3)

|s|>00 S

where A; > 0 denotes the first eigenvalue of the operator — A with Dirichlet boundary
conditions on 2. Additionally, f satisfies the polynomial growth condition:

1f(s) = fGs)l <clst —sol(L+Is1177 +1s21°7Y), si,s2eR, (1.4)

for some constant ¢ > 0 and exponent 1 < p < %—J_r% and

s
f(s)s < / f@r)dr :=F(s), seR. (1.5)
0
As a consequence of (1.4), the nonlinear term f also satisfies:

[f()] <c(1+]s]?), seR, (1.6)

for some constant ¢ > 0. Finally, the external source g is a differentiable function
satisfying the conditions

g & € Li(R, L*()), (1.7)

where Li(R, L%2(Q))isa subspace of L? (R, LY(Q)), given by

loc
4]

L} (R, L2(Q)) = {h: R — LX(Q) ’ / ||h(s)||i2(m ds < o0, [f1,0] C ]R},
1
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with norm

t+1
17112, = supf 7)1 5,0 ds < 00
LyR.L2Q) — [ J, L2()

and

W, 2R, LA(Q)) = {h e W-A(R, L2(Q)) ‘ h.h € LA(R, LZ(Q))}

loc

with norm

2 _ 2 2
”h||Whl'2(R,L2(Q)) - ”h”Li(R,Lz(Q)) + ”ht”LIZ’(R,LZ(Q))- (18)

The model presented in (1.1) is inspired by its autonomous counterpart, widely
studied in the context of asymptotic behavior (see [12, 19, 20, 26]) and references
therein). It has important physical applications, such as wave propagation in nonlinear
elastic rods and ion-acoustic waves, see [6, 18, 22, 30]. When the term Au;; is omit-
ted, (1.1) reduces to the classical strongly damped wave equation [11]. For related
nonautonomous models, see [4, 5, 7, 10, 11, 13].

From a historical point of view, in [12], problem (1.1) was considered in its
autonomous version with g = 0 and n(¢) = u (a constant function) and the authors
were concerned about the well-posedness, existence and uniqueness of global solu-
tions. Furthermore, the existence of a gradient-like global attractor for the problem was
established using the semigroup approach. In [3], the authors significantly expanded
upon the analysis introduced in [12] considering for that time a nonautonomous term
(expressed by the time-dependent function 7(¢), but yet with g = 0) and provided a
complete survey about this problem in a pullback setting, ensuring the existence and
robustness of a family of pullback exponential attractors, as well as establishing the
existence of a pullback attractor whose sections possess uniformly bounded finite frac-
tal dimension. Moreover, in [3], the authors also established the upper semicontinuity
and regularity of the pullback attractor.

In this work, we revisit the nonautonomous problem, this time focusing on its
forward dynamics, in the sense of uniform attractors. More precisely, we consider
problem (1.1) with both time-dependent functions g(¢) and 7n(¢), and establish for
the first time in the literature the existence, regularity, and upper semicontinuity of
the uniform attractor associated with this problem. It is worth mentioning that the
addition of a time-dependent function g(¢) satisfying assumption (1.7) (rather than a
direct boundedness condition as used in previous nonautonomous second-order works)
brings a considerable difficulty in establishing the existence of solutions and, conse-
quently, the existence of its uniform attractor, since the construction of the required
symbol space driving the system is strictly related to the nonautonomous terms of
the problem. Still regarding the symbol space, in this work we prove the existence
of a uniform attractor for (1.1) without necessarily requiring its symbol space to be a
compact set (this compactness is a standard hypothesis, for instance, in the classical
reference [14]). Moreover, we address also that, even with the uniform attractor not
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5642 V.T. Azevedo et al.

satisfying an invariance property, we were able to apply the bootstrapping technique in
order to prove its regularization (for instance, in [3], this property was proved strongly
based on the natural invariance of pullback attractors, building on the developments
presented in [12]) and it may provide a framework for extending the same technique
to a broader class of nonautonomous evolution equations whose asymptotic behavior
is described by uniform attractors.

Finally, compared to [3], where the existence of the pullback attractor was obtained
by a smoothing property, this work draws inspiration from [25]. In that paper, the
authors studied the forward dynamics of a wave equation with nonlinear damping and
developed a method (see [25, Theorem 4.2]) based on contractive functions to verify
uniform asymptotic compactness, which is crucial for establishing the existence of
uniform attractors. The method described in [25] was first inspired by results due to
Chueshov and Lasiecka for autonomous systems as given in [16, Proposition 3.2] and
[17, Proposition 2.10].

In addition, still related to [25], where a general (possibly nonlinear) damping
term of the form /A (u,) is considered, our case features a linear damping term given
by h(u;) = Au,, but with a nonautonomous coefficient 7(¢), which adds further
complexity to the model. Notably, the presence of the term Au;; in our equation
is nonstandard in the classical literature, highlighting both the originality and the
analytical challenges addressed in this work.

In general, compared with earlier results, we highlight the achievement of signifi-
cant advances concerning the global well-posedness of problem (1.1) within this new
forward nonautonomous framework. Furthermore, we contribute to a deeper under-
standing of its asymptotic behavior by providing a detailed forward analysis of problem
(1.1), including, for the first time, the existence, regularity, and upper semicontinu-
ity of the uniform attractor associated with this problem. These contributions extend
the theory to nonautonomous cases and consolidate key qualitative properties of the
corresponding dynamical system.

Back to the analysis of the evolution problem, under the previous assumptions,
we consider system (1.1) in the Hilbert space H(} () x HO1 (£2) and according to the
approaches outlined in [3] and [12], we will conduct a detailed analysis of problem (1.1)
by introducing the change of variables (, z), with z = (I — A)u. This transformation
leads us to the following system:

Zu + Az + Az = fe(z) + g(x,t), t>s5, x €,
z=0, t>s5, x €0, (1.9
z(s) =zo and z;(s) = wo,

where A = I — (I — A" e LIHYQ)), f¢ = fol — A) and H Q) is
the extrapolation space of H2(2) N H(} (€2) generated by the realization of —A in
H*(Q)N HO1 (£2). The symbol £(X) denotes the space of all bounded linear operators
from a Banach space X into itself.
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The change of variable w = z; now leads us to the following first-order problem:

el o
21-2)

where Q(t) € LIH™1(Q) x H~1(Q)) is given by

(1.10)

0o -1 0 -1
Q0 = [A n(t)A} = [1 Y N T YO A A A)U] (1.11)

and F: R x H(Q) x H1(Q) — H~'(Q) x H~!(Q) is given by

f(t, [UZ)D - |:fe(z)—i(—)g(x t)}, [uﬂ e H Y Q) x H'(Q). (1.12)

The article is organized as follows: In Sect. 2, we present the mathematical formu-
lation of the problem and the main theoretical results ensuring the well-posedness of
problem (1.1) in HJ () x Hj (). Next, in Sect. 3, we construct the symbol space
equipped with a suitable topology, which is explored in more detail in this section.
Without assuming the compactness of the symbol space, we define a family of evolu-
tion processes associated with system (3.3) and establish the existence of the uniform
attractor using the contractive functions technique (see Lemma A.9). Moreover, we
establish further properties, including the upper semicontinuity of this family of uni-
form attractors and its regularity in (H2(Q) N H} () x (H*(2) N Hy (), which
are discussed in Sects. 4 and 5, respectively. Finally, in Sect. 6, under more restric-
tive conditions, we assume the compactness of the symbol space with respect to the
topology introduced in Sect. 3 to obtain a characterization of the uniform attractor
via kernel sections (see Theorem 6.2). Additionally, we have included an Appendix A
that presents some basic definitions and abstract results on the existence and unique-
ness of solutions, as well as the theory of uniform attractors for systems of evolution
processes. These concepts are essential for the comprehensive understanding of this
work.

2 Local and global well-posedness results

Let us denote by A the closed extension in H~!() of the Dirichlet Laplacian with
domain H?(2) N HJ (), where Q is a bounded smooth domain in RV, N > 3. By

{X% : « € R} we mean the double-sided fractional power scale generated by (X, A)
where X = L2(Q)and A = I — A (see [1] or [21]). In this case, we set A = [ — A~

It is well-known that X~ = H-'(Q), X7 = H}(Q) and X' = H*(Q) N HO(Q)
(see [23] or [27]).
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5644 V.T. Azevedo et al.

In order to ensure the local and global well-posedness of solutions for problem
(1.9) in X~ x X~2 (which is equivalent to solve (1.10) in X2 x X~7) we will
apply the techniques developed in [3, 12, 29]. Consequently, we shall be able to obtain
the same results for (1.1) in X I x X %. For that, we will consider evolution processes
{S—1p(t,s) : t > s}in X’% X X’% and {S(¢,s) : t > s}in X% X X% associated
respectively with the problems (1.9) and (1.1), which will be seen to be closely related
to each other (see Theorems 2.14 and 2.16). To begin understanding the relationship
between S and S_1 2, let us first recall an essential result.

Lemma 2.1 [12, Lemma 2.3] Lets > Oandr > —%. Then the map given by

D X' x X' — XIS x XIS
X1 A_S 0 X1
; ~ o
X2 0 A7 || x

is an isometric isomorphism. We denote @;1 = ©_;. In particular, @ is an isometric
1 1 1 1
isomorphism from X2 x X" 2 into X2 x XZ2.
To the aim of this first part concerning the proof of the local well-posedness property,
we shall remember some auxiliary results such as the continuity of the family of

operators Q and the Lipschitz condition on the map F. Before that, we recall some
important continuous embeddings that will used throughout this work:

N

H{(Q) — H'(Q) — L' (Q) — L*(Q), if 5

11
Z -2z >0, (2.1
r 2
see Theorem 1.1, Chapter 2, in [14], and
H{(Q) < X2 < H*(Q), forall s €R,

see Theorem 16.1 in [28]. Remember we are assuming that N > 3. By duality, we
obtain

1 1

LX) <> L' (@) <> X%, if —+—=1 and u
r r

N

1
> - > 0. (2.2)
r

N =
N =

Lemma 2.2 [3, Lemma 3.2] The map R > t —> Q(¢) € E(X_% X X_%) defined in
(1.11) is continuous in the uniform operator topology.

Lemma 2.3 [12, Lemma2.4] Assume that  : R —> R satisfies condition (1.4). Then
fe: X7 — X2
¢ — f(P):QCcRYN — R
X = AP = f(AT )

1 1 . . . . .
defines an operator from X2 into X~ 2 which is Lipschitz continuous in bounded
1
subsets of X~ 2.
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Lemma 2.4 Assume that f satisfies condition (1.4) and g satisfies condition (1.7).
Then the operator F: R x X 2xX 71— X2 x X2 defined in (1.12) is locally
Lipschitz continuous in X 3 x X2 uniformly in t on bounded intervals.

Proof 1t is an immediate consequence of Lemma 2.3 and the definition of F. O
Lemma 2.5 Under the same hypotheses of Lemma 2.4, the mapping F is locally

bounded in X2 x X~2 uniformly in t on R.

Proof Let D € X~2 x X~2 be an arbitrary bounded set. If 1 € R and |: ¢ j| € D then

4ak)

for some ¢; > 0. On the other hand, by using (1.6) and the embeddings (2.1)—(2.2),
we obtain

= lr@+eo] oy <@l +als®]y.

1
X 2xX~

e e i—1 P
|7 @]y sclr@l, oy, < c3<1 + )4 ‘p”ﬂ’%(m)

<t doly ) =a(1+ ol ).
X2 X2
It follows by [24, Proposition 7.1] that

g2 < sup I8z < Cligllwraw,i+1),22(2)
relt.r+1]

1

2
2 2
S C<”8”L2«z,z+1>,L2(m> + ||gf”L2<<z,z+1>,L2(sz>))
1

t+1 ) t+1 ) 2
< C(/ g ()75 g dr +/ g (M72q) dr)
t t
1

t+1 ) t+1 ) 3
< C(Supf g (I72q) dr + SUP/ lgr (72 dr)
h teR Jt L@ teR Jt L

1

2 2 2
g C<”g||L£(R,L2(Q)) + ”gl ”Li(R,LZ(Q)))

g C||g”Wl}'2(R,L2(S2))’

where C = 2 (see the proof of [24, Proposition 7.1] to notice that it is indeed
independent of ¢ € R).
Consequently, by (1.7), we conclude that there is a constant M = M (D) > 0 such

A

l 1 g M’
X"2IxX72
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5646 V.T. Azevedo et al.

and the result is proved. O

By Lemmas 2.2,2.4, and 2.5, the conditions of Theorem A.20 are satisfied, ensuring
the local well-posedness of solutions to problem (1.9).

Theorem 2.6 Assume that f satisfies (1.4) and g satisfies (1.7). Then for each zg, wg €

1 . . . .
X712 and s € R, there exists a maximal time of existence T = T™*(z9, wg) > s
such that the problem (1.9) admits a unique solution

2() =205, 20) € C([s, Tmex), X’%) nc! ((s, Tmex), X’%)
defined on the maximal interval of existence [s, T™), where either T™** = 0o or

lim (||z(t,s,z())||i,% + ||z (2, s, wO)”i’%) = o0.

I_)(TWI{!X)*
Proof Since (1.9) is equivalent to system (1.10) (with w = z;), the result is a
consequence of Theorem A.20 applied to the first order problem (1.10). O

The local well-posedness of solutions to the non-autonomous second-order semi-
linear evolution equation (1.1) follows from Lemma 2.1, combined with Theorem
2.6.

Theorem 2.7 (Local well-posedness) Assume that f satisfies (1.4) and g satisfies

1 . . . .
(1.7). Then for each ug, vo € X2 and s € R, there exists a maximal time of existence

Tu'se > S such that the problem (1.1) admits a unique solution

uo,vo ug,vo

u(-) =u(-,s,ug) € C([s, nax X%) N Cl((s, /har X%)

max

), where either )"}

defined on the maximal interval of existence [s, T/

» Tug,vo = o0 or

. 2 2
(s s i) =

The next step is to prove the global well-posedness of solutions to the problem
(1.9), and consequently to the problem (1.1). In order to do that, we first recall some
auxiliary results.

Lemma 2.8 [3, Lemma 3.7] The inequality

Al
14+ A2

~_1
Il <Ivli> , — 1A zy )
X X X

2 2

=

holds for all ¥ € X~2.
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Remark 2.9 As a direct consequence of Lemma 2.8, we have the Poincaré inequality
A2, < —— P yex
x 2 142 x 3 '

Lemma 2.10 [3, Lemma 3.8] Assume that f satisfies conditions (1.3) and (1.4). Then
the following properties hold:

(i) There exist vg € (0, A1) and K| > 0 such that

Vo)

K,
1+k IIWII 1 K

/f(A YAy dx

forall y € X2,
(ii) There exist vy € (0, A1) and Ko > O such that

//A_lwf(s)dsdx (1= )||w||2 | +K
o Jo \ 2(]4_)\) 2,

forall € X1
Lemma 2.11 [12, Lemma 2.1] The following equality holds:

¢,Aw)x=fg¢wdx, $ € LT (Q), ¥ € X2

I\)\

(A~

Lemma 2.12 [15, Lemma 2.1] For everyt,t,8 € Rwitht > 7, 8 > Oand g €
L2(R, L2()), we have

t
1
—B(r1—s) 2
Supf e g (s)ll ds < ||g||
i L2(Q) 1= eB" 2R L2(Q)

In the following, Lemma 2.13 deals with a boundedness result for the solution of
problem (1.9).

Lemma 2.13 Assume that conditions (1.3), (1.4) and (1.7) hold and let zg, wgy € X*%
and s € R be given. Then z(-, s, zo) and z;: (-, s, wo) satisfy for some constant C =
C(zo, wo) > 0 the inequality

2 2
12y + 2y < e+ —||g||L2(R )

in[s, T™), where T = T™% (29, wo) > s comes from Theorem 2.6.
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5648 V.T. Azevedo et al.

Proof According to Theorem 2.6, there exists a solution z(-) = z(-, s, z0) of (1.9) in
X -3 x X -3 defined on some interval [s, 7). Taking the inner product of (1.9)
with z; in X ’%, we obtain the following equality

(e z) oy 0O = A Dz z) y +H{T = ANz
=(f@.a) g +{e@.z)

2 2

forall t € [s, T™%"). Consequently,

d[1 ~ 1 _1
—[z(nztniﬁnznzl - |A un%)}—(f%z),z,)X 2

d
! Xz Xz 2.3)

= —n(r)(nztni_. - ||A—5zt||§(_.) +{g), 2), -

[N
[N

t
Setting F(t) = [ f(r)dr, it follows by Lemma 2.11 that
0

(fe(z)’Z’)X*% - (Ax%fe(z)’ A~%A~71Zf>L2(SZ) - /Q f(AT ')Az, dx
_[Z _4 (-1
—fmwm »M—m(LﬂAzmo.

Thus, Eq. (2.3) becomes

d[1 ~_1 .
dl[ (nzfn NN CE 2z||§_%)—/ F(A lz)dX}=
@ (2.4)

= —nm(nz,nzl —||A5zt||21) HONANEE
X X 2

[
N

By Lemma 2.10, (ii), one can obtain vy € (0, A1) and K, > 0 such that

_ i1 (Mi—wo) —»
/QF(A 2)dx > — 2(1+“|| APy - Ko 25)

Condition (1.2) and Lemma 2.8 imply the following estimate

2

—n(r)(nztni_l 1A=2z,2 1><—1H [F: t|| 4 <0, (2.6)

[N

and by Lemma 2.11, Young’s and Poincaré’s inequalities, we have

2

[N

—(g(t),z,>x_l=—/g(r>ﬁ zdx <clgWI} + ATz
Q X 2.7

Vo
<eilg®lk + mnz,u .
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5649
with ¢; > 0 and we used Remark 2.9.
Combining the estimates (2.4), (2.5), (2.6), and (2.7), we can write
d 1 2 ~_1 2 / T—1
—||A™2 — F(A dx | <
dt[ (nztn ey = Z”x—%) | F(AT2)ax
<ellgOly + ——Iliz >,
414+ 1) X2
< Ky +erllg@) +A—||z || —/ F(A*‘z)dx+L||z||
S K2 118 X A0+ A t 1 o 20+ 1) 1
Lemma 2.8 2 1 2 2 2
< atalg®ly+ 5 (102, + 1’ — 1A )
X2 -2
—/ F(Aflz)dx,
Q
where ¢; > max{K», c1}. By the Gronwall’s inequality, we have
1 -1 ~_
[—(nztnz_l +lzl, — 1A un%)—/ F(A IZ)dX}
2 X2 X2 X2 Q
t
<™+ [ e+ allg)dr 28)
N

t
c(e(’*s>+/ g dr). ot e [s, 1),
s

for some constant ¢ = ¢(zg, wp) > 0. But, since

1 ~ 1 N
=z l® , +lzl*  — 1A 220 —/ F(A™'2)dx >
2 X2 X"z X"z Q

Lemma2.8 1 2A1 ~
>zl — = z)* , — | F(A7'2)d
Sl 4(1—|—A)”ZH 4 /Q (A7'2)dx
2.5 1 (A1 — Vo)
> —||zl||2 —— ||z || | = Iz || LK
2 4(1+/\ ) -3 21441
||z,|| 1+4(1+“||z|| K,

it follows from (2.8) and Lemma 2.12 that

2

t
< (e +sw [ gl ar)

t>s

t
Izl y < (e [ gl ar)
X2 X s

X C( (@=s) + _”g”LZ(R LZ(Q))) re [S9 Tmax)’
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5650 V.T. Azevedo et al.

for some constant C = C(zg, wo) > O. m]

As a consequence of Lemma 2.13, Theorem 2.6 and Theorem A.20, we can state
the following global well-posedness result on solutions of the problem (1.9).

Theorem 2.14 Assume that conditions (1.3), (1.4) and (1.7) hold and let 7o, wgy € X_%
and s € R be given. Then the solution z(-) = z(-, s, zo) of (1.9) exists globally in

. . 01 _ [ zt,5.20) i
time. Moreover, the relation S_12(t, 5) [wo] = [z,(t,s,wo) defines an evolution process

1 1 1 1
in X~ 2 x X2 associated to the problem (1.9) which satisfies in X~ 2 x X2 the
variation of constants formula

S_1,2(2,5) [;%] =L_1p(t,s) [;%] +U_12(2,5) [5)%] , (2.9)
where
Loyp(t.s)=1— /St Q()L_15(t. s)dt (2.10)
and

t
U_12(t,5) [5)‘;} = / L_ip(t, r)]—'(t, S_12(t, s) [5}%] )dr. 2.11)

s

Next, we state the version of Lemma 2.13 concerning the boundedness of the
solution of problem (1.1), and also the global well-posedness result of solution of the
problem (1.1). These results are consequences of Lemma 2.13, Theorem 2.14, and
Lemma 2.1.

Lemma 2.15 Assume that conditions (1.3), (1.4) and (1.7) hold and let ug, vy € X%
and s € R be given. Then u(-, s, ug) and u; (-, s, vo) satisfy for some constant C =
C(ug, vo) > 0 the inequality

1
2 2 (t—s) 2
u u < C(e — )
” ”X% + ” t”X% X + 1 _e”g”l%(R;Lz(Q))
in[s, %, ), where T,.% > s comes from Theorem 2.].

Theorem 2.16 (Global well-posedness) Assume that conditions (1.3), (1.4) and (1.7)
hold and let ug, vo € X% and s € R be given. Then the solution u(-) = u(-, s, ug) of
(1.1) exists globally in time. Moreover, the relation S(t, s) [:Z] = [u“t((’t’i:b;%))] defines
an evolution process in X 3 % X7 associated with the problem (1.1), which is given
by S(t,s) = ®1S_12(t, s)P_1, and satisfies in X% X X% the variation of constants
formula

S(t, ) [Zg} =L, s) [’:}g} + U1, s) [’:}g} ,
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where
L(t,s)=®1 L1, )1 and U(t,s) = P1U_12(t,5)D_q,

and more specifically

t
U(t,s)[l;g:| =/ L(z,r)cblf(r, cb_IS(r,s)[’;ngr.

3 Existence of the uniform attractor
3.1 Construction of the symbol space associated with the problem (1.1)

Let y(1) = (u(t), u;(¢)) and Y = H} (Q) x Hj(Q) endowed with the finite energy
norm
1

Iylly = {||u||H01(Q) + ||uz||H01(Q)}2.

By considering oo (t) = (n(z), g(x, t)) and setting Ag, (1) (1, v) = (v, Au+ Av; +
fu) +n(t)Av + g(x, 1)), then the nonautonomous system (1.1) can be rewritten in
the operator form

0y = Aoy (),

3.1
y(s) = (uo, vo). G-D

The function op(¢) = (n(¢), g(x, t)) is known as the time symbol (or symbol) of
Eq. (3.1). The reader may consult [14] for more details. Let

na(t) =n@+h) and gu(x, 1) = g(x, 1+ h),
forall ¢, h € R and x € Q. Now, define
Yo={(m.gn): he R} S {np: h e R} x {gn: h € R}.
Since n € C(R) is uniformly continuous and {n;, € C([t{, 2], Ry) : h € R}/ is pre-
compact in C([t1, t2], R4 ) for all bounded subinterval [z, 2] C R (Arzeld—Ascoli),

it follows by [14, Proposition 2.1, Chapter V] that

{nn : h € R} is precompact in E1 = (C(R), dg,),

. . dg (£1.6)
with topology generated by the Fréchet metric dz, (§1, &) = > oy 2% (%) ,
g1 ’

where d%l (&1, &2) = maxse[—n,ny |E1(t) — &2(2)|, n € N. We recall that a sequence of
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functions {&,},en C E1 converges to a function £ € Ej (which will be denoted by

&, ELEN &), if for any interval [a, b] C R, a < b, there holds the convergence
n—oo

lim max |£,(t) — &(1)| = O.

n—00 t€la,b]
By condition (1.7), we have g € W;’Z(R, L%(Q)). Consider the family
{gn: h e R} in Ej,

where E, represents the space Wllo’f(R, LZ(Q)) endowed with the local 2-power mean
convergence topology, that is, a sequence {g,}n,eny C Ep converges to a function

g € E; (which will be denoted by g, =, g), if for any interval [a, b] C R,a < b,
n—>oo

we have
b 2 2
Tim_ f (ngn (5) = 822 + 13:gn(s) — atg(s>||Lz(Q))ds —o0.

We note that {g,, : & € R} is not supposed to be necessarily precompact in E;. Let
us denote the hull of the symbol o, where o¢(¢) = (n(t), g(x, t)), by

o]

% =H(o0) = Xo
where E := E; x Ej is endowed with the product topology induced by E; and Ej.
Remark 3.1 According to [14, Chapter V, Sections 2-3], X is a complete metric space.

Proposition 3.2 The following properties hold:
(i) X is bounded in Cp(R) x W;’Z(R, L%(RQ)), and for any o € ¥, we have

”O-”Cb(R)XWbl’Z(R,LZ(Q)) < a + C”g”Wbl'z(R,Lz(Q))’

where C > 0, ap > 0 comes from (1.2), || - ”W“(R L2(Q) is given by (1.8)
h )

and Cp(R) is endowed with the uniform norm ||nllcc = sup,cr [n(t)|. In par-
ticular, for o = (01,02) € X, we have a1 < o1(t) < ap forallt € R, and

||O'2||W[:'2(R,L2(Q)) < C”g”WbI’Z(R,LZ(Q))'

(ii) The translation group {6y, : h € R} is continuous on E for all h € R.
(iii) The translation group {0, : h € R} acting on X is invariant in X, that is,

X =%, forallh e R.

Proof (i) Let 0 = (01, 02) € X. Then there exists a sequence {t;},en C R such that

max |t + 1) — o1 ()] —> 0
t€la,b]
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and

b
: 2 2
nll)ngo\/a' (”g(S + tn) - GZ(S)”LZ(Q) + ”alg(s + tn) - atUZ(S)”LZ(Q)> ds = Oa
(3.2)

whenever [a, b] is a compact interval.

On one hand, it follows by condition (1.2) that 01 € Cp(R) with0 < a1 < o1(¢) <
ap forall t € R.

On the other hand, since

llo2() 1172y < (ng(s + 1) — 02972 + llels + mniz(m),

||at02(s)||L2(Q) <”8tg(s + tn) - 8;0'2(S)||L2(Q) + ”atg(s + tn)“L2(Q))

we derive for each ¢ € R that

1 t+1 )
E /[‘ ||02(S)||L2(Q) ds
t+tp+1

t+1
< / lgCs + 1) = 02(9) 172 ds + / lg() 172, ds
t t

+in

t+1 ) r+1 )
g / ”g(s"'tn) _UZ(S)HLZ(Q) ds+sup/ ”g(S)HLZ(Q) dS
t reRJr
t+1 ) )
= /[. ||g(S + tn) - oZ(S)"LZ(Q) dS + ”g”Li(R,LZ(Q))’

and by (3.2) it follows that |0y By an analogous

LZ(R 2@y X 2||g”L2(R 12(Q))

argument, it follows that 10;02 1% < 2||8,g|| hence

L2RL2Q) LI(R,L2(Q))

loa 2 <2083, 12

W2 R,L2(Q) R,L2(Q)"

Consequently,

||a||cb(R)XWbl’2(R,L2(Q)) = ||Gl ”Cb(R) + I|G2||W;'2(R,L2(Q)) < a + C”g”Wbl’z(R,Lz(Q))'

(ii) Let & € R be fixed, and let {(7;,;, g1) }neN be a sequence in E such that 77, L) n
n—oo

oF) E1

and g, — 2. By [14, Proposition 2.3, Chapter V], we conclude that 6;,7,, ——
n—>00 n—00
onn.
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Moreover, note that for any interval [a, b] C R with a < b, we have

b
. — — 2 —_ — 2
Tim_ / <||0hgn<s)—9hg(s>||Lz(m+||9hatgn<s>—eha,g(s>||Lz(9)>ds

b
T — - 2 — - 2
= lim / (I G+ =F(s + M g F 10T (s + M =06+, ) ds

b+h 5 5
= lim (180 = B0 22 + 19 E () = 4F )32, ) r

n— oo a+h

=0,

where in last equality we used that # € R is fixed and g, =2, g. It follows that
n—oQ

Ongn ——> Oh3,
n—o0
and we complete the proof.
(iii) Let & € R be fixed. If 0 € ¥ = H(oyp), then o (-) = lim,,_, o 09(- + h,) in &,
where {h,},en C R. By the continuity of 6;,: E — &, we have

0po () = lim 0p00(- + hy) = lim o0o(- + hy + h),
n—>0oo n—oo

and, hence, 6, C 2.
Conversely, by the continuity of 6_j, as stated in item (ii), we obtain

O_po(-) = lim 6_jo0(- + hy) = lim oo(- + hy, — h),
n—o00 n—00
which implies that 6_;0 (-) € X. Therefore,
o =00_po0 €O, X,

showing that ¥ C 6, X. O

Remark 3.3 Assume that conditions (1.3), (1.4) and (1.7) hold. Let

Asry(u,v) = (v, Au+ Ave + f(u) + (1) Av + g(x, 1)),

=

witho (r) = (7(t), g(x,1)),0 € X, with ¥ = H(op) = ¥o , and consider the system
Or(u,ur) = Aoy(u, uy), t>s, x €8,

u=0,r>s, x €08, (3.3)
u(s,x) =uo(x), u(s,x) =vp(x), x € Q.
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Foru e X%, letz=({—-A)u e X2 and set w(t) = z;(¢). Taking
Bo(1)(z, w) = (w, =) Aw — Az + f°(2) +g(x, 1)),

with o () = (7(t), g(x, 1)), o € %, it follows that system (3.3) becomes

0(z,2) = Bsn(z,21), t>s5, x €,
z=0,t>s, x €012, (3.4
Z(Sv-x) = ZO(X)’ Zt(S,.X) - wO(x), X € Qa

where A = [ — (I — A~ e E(X_%) and f¢ = f o (I — A). By the proofs of
Theorem 2.6, Lemma 2.13 and Theorem 2.14, the system (3.4) generates a family of
processes {Sq,—1/2(t, §)}oex in X_% X X_% defined by

%0 27(t,5.,20)
So,—1/2(1, S)[wo] = [17(,,_Y,w%)]

forall 7 > s, where 2% (-) = 2% (-, 5, 20) € C([s, +00), X—%) n cl((s, +00), X—%)
is a global solution of (3.4) satisfying

_ 1
L < (e 4 gl

o2 o
llz IIX,I + Iz 1— wb"z(R;Lz(sz)))’

2
I
b

[~]
[S']

for all + > s. Moreover, the processes {Sy,—1/2(, §)}oex satisfies (2.9), (2.10), and
2.11).

On the other hand, by the proofs of Theorem 2.7, Lemma 2.15 and Theorem 2.16,
the system (3.3) generates a family of uniformly bounded processes {Sy (¢, 5)}scx in

X7 x X2 given by
7(t,5,u0)
Sat.9|t] =[]
forallr > s, where u® (-) = u®(-, s, ug) € C([s, +00), X%> nct ((s, +00), X%) is
a global solution of (3.3) satisfying

—s 1
12 )+ 1 12 < C (e + —— gl
X2 X2 b

1—e (R;Lz(ﬂ)))’

for all ¢+ > s. Further,
So(t,s) = DP18_1/2,6(t, 5)P_1

and

S (t.5) [m = Lo(t.s) [Zg] +Us (1, 9) [';g} :
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where
Ly(t,s) = @1Lg—12(t,5)®_1 and  Us(t,5) = ®1Ug —12(t,5) D1,

and more specifically

t
Ug(t,s)[zg} =/ L, (t, t)CIDI}'o(r, d_18,(, s)[’l‘)g])dr.

In what follows, we prove the existence of a uniformly bounded absorbing set for
the system {S, (¢, §)}sex-

3.2 Existence of a uniformly absorbing set

Lemma 3.4 Let {S, (¢, s)}sex be the family of processes associated with system (3.3).
Then there exists a bounded set B C X 3 % X? that uniformly (w.r.t. o € X) absorbs

all bounded subsets of X > x X % that is, for every bounded subset D C X > x X2
there exists an absorbing time Tp > 0 such that

U S-¢.0D B, forall t>Tp.

oED

Proof Given o € X, o) = @@),8x,0), and zo,wo € X_%, let
So—12, 0[] = [%] forall # > 0.Let 0 < b < gy and define for any

t > 0 the functionals
) —/ F(A™'2%) dx
Q

1 ~ 1
Wy (1) = 5<I|z"lli_1 + ||zf||’j(_1 —|IA zfni

[S']
[Nl
Bl—

and

VE(1) = Wy (1) + b(2°, zf)x,%,
t
where F (1) :/ f(r)dr.
0

Claim 1: There are constants &, ¢ > 0 (which is independent of the choice of o)
such that

)
21+ Ap)

STy + 0Py + 11 ),
X2 X2 X2

(11 7Ry ) = &< Wo)

forallt > 0and o € X.
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Indeed, on one hand, by Lemma 2.10, (ii), one can obtain vy € (0, A1) and ¢ > 0
such that

~ Al —V ~
—/ F(A7 ) de >~ "W o2
Q 2(1+ A1) X2

and, consequently, by Lemma 2.8 we obtain

Wo (1) 2> %(llzallié + IIZ?II;% - ||A§ZJ||§(%> ;(i I~ ;” 0”27% _z
m”z I? ot %Ilzi’lli_% - ﬁuz“”i_%
+ ﬁllz“ll;% ¢
= S+ IR~
> s (TR 12 ) -2 3:35)

forallt > 0and o € X.
On the other hand, the estimate (1.6) implies

f|F(A—1z“)|dx<c1(1+||A—1z 175k q) <e2(1+1A727171")
Q X2

+1
=o(1+117"))
X2
where the constants ¢; > 0 (i = 1, 2) are independent of o, resulting in

< 1
Wo) SE(1+I7I2 41712 4 +117) ). 120,02, (36

X 2 2

for some constant ¢ > 0 (which is independent of the choice of o).
The Claim 1 follows by (3.5) and (3.6).
Now, note that inequality (3.5) ensures that

2(1 +Ap)b ~
V20 = Wo @] <B(I7I ) + 171 _y) < = 52 (Wol) +)

which implies

clLpWo (1) —cop < V2 < capWolt) +cop, 120, 0€X, 3.7
with
2¢(1 + Aq)b 2(1 +Ap)b
Co,b=w>0, cl,b=l—u>0, and
Vo %)
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2(1 4+ xp)b
Cz’b:1+w>0.
Vo

Derivating Vf (t) with respect to ¢, we obtain
d _, d d o o
d—Vg(t)— EWg(Z)"‘E[b(Z » Xt >X7% .

. d air 2
Cl 20 —We(t) < —|—7——— Hlly, f
aim 2: — o (1) ((1 e 2) llz7 |I T3 2 g )II%» for some
constant ¢3 > 0 and for any § > O (they are 1ndependent of o).
In fact, from (2.4) we have

) (G U L R DR
dt ) X2
<GSR 4 311 + IR
for any § > 0.
Claim 3: %[(z“,zf)x_%] < =We(t) + (— 2(1)-11%1) + a2281 2(1612_511)

93\ .02 (3_ a2 >02 S s f hoi
DI+ (5 + 55+ g Iy 5 8@ for any choice
of 81, 62,63 > 0.

Indeed, note that

d
d—[<z°, Zf)xé} Al

=71y =0 F) +R(AT327, A7320)

= (e —naep )
+/Qf(A_ 7)A~ 127 dx +

3 ~_ 1 _
= W)+ =171 ——||z"||2_1 +—||A 22701 =A%, 20)
2 X2 X2 2 X2

X 2
DSV UV G Yl o\ i—l_ o 1o
PO A [ (PATA T G ) dx
+(8®,27) -

L (2725

2 X2

((t)z) |

N

D=

An application of (1.5) yields

/ (f(f?‘lz")f?‘lz" - F(A—lz")) dx <0,
Q
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and, consequently, by using Remark 2.9 and the Young’s and Poincaré’s inequalities

d
dt [(Z > L )X_5:|

3 2 2
<—Wo(t)+§||Zf|| 7% —EIIZOIIX 1t

B X
31
ta(F 11 .+—||,|| )

8~
—5,0
+az<—2 1A

[N
N =

2 €3
4 ||2 1 +_||A ZZt || 1) ”Z || % —||g(t)||%(
1 a261 1 a282 3
—Wq (t (__ _)
O T P aaen Taae T2 12713 3
3 9 @ o2 o 2
5 T s T o ) — g%,
" (2 T2 250 +M))”Zr Iyt 25, Bl

for any choice of 81, 62,63 > 0

Based on Claims 2 and 3, we conclude that

d . bi aré1b aréb 83b 9
Lvhay < —bW, (1) — - — S T
ar o o () (2(1+)\1) 2 20+r0) 2 )”Z I
aii 5§ 3b ax ab ! ﬂ”2
T+a 2 2 25, 25,(1+ap )"t g
3( +D
g%

1
X2

+

Choosing 81, 82,83, b > O sufficiently small, one can find a constant
B(81, 82, 83, b) > 0 such that

d ca(b+1)
Va0 < =pWo ) = (11 _y 117y ) + S5 IR0
c3(b+1) _
bW, () + g%
25
3.7 » _ ) .
< =V (@) +eallg@®) |y + cp,
forall t+ >

0 and positive constants c4, ¢p, ¢, > 0 which are independent of o. By
Gronwall’s inequality, Lemma 2.12 and Proposition 3.2, we obtain

t
V2@ < V2O + [0 (aalglR + &) dr
0

' '
< Vf(O)e_Cb’ +ca sup/ e~ r)||§(r)||§( dr + & sup (e_cb’ / e"brdr>
1>0Jo >0 0
b —cpt C4 —112 Eb —cpt
< b -2 _ b
X VO’ (O)e + 1 — e ”g”Li(R,LZ(Q)) + ch tsglg(l e )
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_ 5b
< V2" + 1_—||g|| —

< V2(0)e ™" 4 Cp,

2R, L2(R)) +

with Cp, > 0. Consequently, using (3.7), we have
Wo(t) < cWs (O)ei%t +c,
for some ¢ > 0. Hence, due to (3.5), it results in

||Z“(t)|| |+ iz (t)ll .l < KWo(0)e ™" + K, forall 1 >0, (3.8)

N

for some constant K > 0 which is independent of o. In this way, let D C X “Ix X3
be a bounded subset. If [ ] € D and [2; Eg;] = [5,%], then it follows by (3.6) that

Wo 0 < (14 N0l g +lhwoll® g +1z0l”"} ) < R,

for some constant Rp > 0 which is independent of the choice of [ ] € Dando € X.
Thus, according to (3.8), one can find Tp > 0 such thatif t > Tp then

2
o
0 —
sex ILZ7 O Jlix-x2
and the result follows by isometries. O

3.3 The uniform attractor

Lemma 3.5 [3, Lemma 4.3] There exists y € (0, 1) such that for any bounded subset
D C X%, there holds

| f Qi) — f(uz)”ug%z(g) < ctllur —uzllgi-v(q), forall ui,uz € D,

for some constant c; = c1(y, D) > 0.

Theorem 3.6 [8, Theorem I1.5.16] (Aubin-Lions—-Simon) Let By C By C Bj be
three Banach spaces. Assume that the embedding of By in By is continuous and the
embedding of By in By is compact. Let p,r € [1, 00]. Given T > 0, consider the set

Ep, = {v e LP((0,T), By) : d—t e L"((0,7), Bz)}

() If p < oo, then the embedding of E, , into L((0, T), By) is compact.
(ii) If p = o0 andr > 1, then the embedding of E, , into Cc°((0, T), By) is compact.
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Lemma 3.7 Let {s;}neny C R be a sequence and g € Wb1 Z(R L%(Q)). Assume that
{un(t) : t € R},en is bounded in H (), and for any T1 > 0, {(uy); () : t € R},en
is bounded in L*°((0, Ty), LZ(Q)) Then for any T > 0 and C > 0 there exist
subsequences {uy, Yxen and {sy, }ken such that

T T
lim lim / / / T (g 1 + s,) — g 1+ $0) (g — 1)
3 Q

k—ool—o00 Jg

dxdtds = 0.

Proof Since {u,(t) : t € R},en is bounded in H (£2) and the embedding H (Q) —
L™(2) iscompactfor2 < m < §=5 (by Relhch—Kondrachov compactness theorem)
we assume without loss of generahty that

2N
N -2

uy(T) - ug in L™(Q), 2<m<

Claim 1: The sequence {u,},cN is convergent, up to a subsequence, in
L'((0, T), L2(2)) and in L™ ((0, T), L™(Q)) with 2 < m < 2.
In fact, consider the sets

oo =1{v € L1((0,T), Hy () : v € L¥((0, T), LX)},
Emoo={v e L"™(0,T), Hy(2)) : v € L¥((0, T), L™())}.
Since {u,,(t) t € Rlyen C El,00 N Ep oo and H () — L™(2) is compact
with2 < m N 2 , then the conclusion of Claim 1 follows by Aubin-Lions-Simon

Theorem (Theorem 3.6, (1)).
Claim 2: If ¢ < 2, then there exists M = M(T) > 0 such that

T z
(/(; lgCx,s +si) — g(x, S+s/)||L;(Q) ) <M||g||Li(R;L2(Q))

and

|

T
(/0 llg:(x, s + i) — g (x, S+S])||L;(Q) ) < M”gt”L%(R;LZ(Q))’

foralli, j e N.
In fact, define gy, (x, s) = g(x, s +s;) and 8s; (x,5) =gx,s+s;),forr € [0, T],
x € Q,and i, j € N. Denote by [T | the greatest integer less than or equal to 7.

Since ¢ < 2 then there exists a constant ¢ > 0 such that || g5, — g, ||i{((0 T).LE Q) <

cligs; — &s; ”iz((O,T),LZ(Q))’ Consequently,

2
”gsl‘ - gSj ”L{ ((0,T),L5(2))
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2 2
< 2C||gsi ||L2((0,T),L2(Q)) + 2C||gSj ||L2((O,T),L2(§Z))
<

2 2
ZC”gSi ||L2((0,T),L2(Q)) + 2C||gSj ”Lz(((),T),Lz(Q))

si+T ) Sj+T )
= 26/ ”g(-x? S)”LZ(Q)dS +26/ ”g('x?S)”LZ(Q)dS
Si Si

J

[ P ’ I UALE 2
<2y [ et s 20 ) [ et gds
k=0"Si k=0 "5t

<A+ LTDIg 2 120y

Analogously,
”(gt)s,- - (gl)Sj ”if((O,T),LK(Q)) < 4C(1 + LTJ)”gt“i[z?(R,LZ(Q))’
where (g:)s;(x,s) = gi(x,s + si) and (g)s; (x,s) = & (x,s + s5;). Taking M =

J4c(1 + | T)), the claim is proved.

Claim 3: The following estimate holds

T T
f f / e T (g(x, 7 +5) —glx, T+ si)(ui —uj)(v)dxdrds
0 K Q

g MT ”g ” W[}’Z(R,Lz(Q)) ”ul (T) —Uuj (T) ”Lm(Q)
+MA+CDlIgly 2@ 2 14 — ujlLmo.).Lm@)

T MT gl 2 20y llui = ujllim.1).Lm@)-

foralli, j e N,C > 0,and2 < m < 2.
In fact, let w(t) = w; ; () = u;(t) —u;(t) and

G(x,1) =g j(x,1) =g(x, 1t +5;) —glx, 1 +5;),
i,jeN,fort e[0,T]and x € Q. Since
d
Gx, e T D, (1) = LG, Ne T D] = Gy (x, e T Dw(r)
—G(x,)Ce CT=Dy @),

we obtain

T T
/ / / e CT=IG(x, T)w,(v) dxdtds
0 K Q

T T
</ /|G(x,T)w(T)|dxds+/ /|G(x,s)w(s)|dxds
0 Q 0 Q

<
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T T
+/ / /|G,(x,t)w(r)|dxdrds
0 K Q
T T
+C/ / f |G(x, T)w(t)|dxdrds
0 K Q

T
T/ }G(x,T)w(T)]dx—i—/ /\G(x,s)w(s)\dxds
Q 0 JQ

T T
+T/ /|G,(x,s)w(s)|dxds+CT/ /|G(x,s)w(s)|dxds
0 Q 0 Q

L 1
T (/ G, T)|™ dx)'" </ |w(T)|mdx)m
Q Q
W o oT "
+ T (/ || Gt(x S)| L’”*(Q) ) </(; ||w(s)||'l'fm(9)ds>

1 1
T « m* T m
+(1+CT) </O [G(x,s) ||’£’m*(mds) (/0 ||w(s)||’£’m<g)ds)

< Mgl 2, 120 (TI0(Dln@) + (1 + CTYwlngo.n o)

T MTIgtlly 12w 2 llwllLm©.1). L7 @)

and the assertion is proved.
By the Claim 1, there exists a subsequence {u,, }ren such that

k,l— o0
Nl (T) = s, ()| pm (@) — 0,
k,l— 2N
lttn, — tn, llLm 0,1, L (2)) =250, 2<m < N—3"
Consequently,

T T
lim lim / / / e (g (. T 4 50.) — g6 T 4 50)) Uy — ttn))s
s Q

k—ool—o00 Jg

(t)dxdtds =0,

proving the result. O

Our next aim is to build a contractive function in order to apply the Lemma A.9.
Let ®_ be the isometry given in Lemma 2.1, (zf), wé) eB= d_(B) C X_% X

X2, where B is the absorbing set obtained in Lemma 3.4, and consider (z', z}),
i =1, 2, solutions to the initial value problem

2y +0i(OAZ + AL = @) +gilx,n), 1>, x€Q,
=0, t>s, xe€dQ,
Z(s) = zf) and zi (s) = w(i),
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with o; (x, 1) = (i (1), gi(¢)) in =. Then z(t) = z' (1) — z2(¢) is solution of system

2+ mOAz; —m(OAZ; + Az = fe:") — £GP
+g1(t) —g(t), t>s5,x € Q,

z=0, t>s5, x €0,

2(s) =z) —z5 and z(s) = wh — w3,

(3.9)

or equivalently,

Zie +mOAz + (i) — mE)AZ2 + Az = fe(z") — f4(2?)
+g1(t) — g2(t), t>5, x € Q,
z=0, t>s, x €09,

2

z(s) = z(l) —z5 and z:(s) = w(l) — w(z).

Consider the functionals

(=]
[N

2 X

1 -
E(t) = 5<||z<r)||21 A2z, + @) )
X X
and

Ep(t) = E(t) + b(z, z/)

_1,
X 2

with b > 0.

Lemma 3.8 There are constants Cy, Co» > 0 such that

CiE(t) S Ep(t) < CE(t) forallt > 0,
for a sufficiently small b > 0.
Proof Note that

b b
Ey) SE® + zllzI* | + = lzl?
2 X2 2 X

2

Lemma 2.8 b(1+ Ay) ~_1 b
< EO+———lzl* 1Az )+ Szl
211 X X2 2 X2

A
< 1+b(1+M)E
Al

[N

(),

with b > 0.

On the other hand, choosing 0 < b < Al applying Remark 2.9 and

1411
X 2 X 2 X 2

Bty > (22 Lo Vize , + 9290
P2\ 72 T a1 ) 2 Meld
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1 b 1 ) 2 )
>(o-2 - —
(2 5 2(lJFM))<IIZI|X_% + ”ZIHX_%
1 b 1 2 1 9 2
> N AT A A < - A 2 )9
<2 2 2(1+)»1)><”Z”X% I Z”X*% + ”ZIHX’%

and denoting C; = 5 — 5 — 2(1J1rm > 0, the proof is complete. O

Lemma 3.9 There exist constants C, C > 0 and some y € (0, 1) such that

d =02
— < — 1 — —
7 Ep(t) < = CEp(r) + C||Z||X iy +b(g1—82.2) 1 {81 —82.2) 4

+ {0 = mIAZZ 7))y + b0 —me)aZ.z)

X2 X2
for sufficiently small b > 0.

Proof Taking the inner product of (3.9) with z; in X ’%, we obtain

d (1 2 i—1 02

d;< (Nl + 1y — 114 Z”x—%)>

=- m(r)(nztni_% —IA725 02y )+ {00 —mnAZz)
+<fe(zl)—fe(z2),zt> e g2

X 2

X2
A
SR e IR PALCO R ACO N
o1 —g2.2) _y + {020 —m@)ALz) . (3.10)

where we used Lemma 2.8. Also, using Lemma 2.8 and Remark 2.9, we have the
following estimate

d
E(“Z’ z,>_;> = bzl +blzzn)

[N

N—

) ~_1 ~_1
<Blal? Ly —bmlzz) +bm)(A 2z A7)
~_1
=b(lzI* | —11A72z))* )
X 2 X 2

+b(fe@h = £1@Dz) e — g7y +b<(n2(t) —m)Azz)

bar§ bay ba 252 -1
<bllzel® +—||z||2_1 +—||zt||2_. + 2224 || 0
X2 2 7

baz 2 1 2
e bl Fe(zh) = Fe(22).
ol - IR+ <f @ - @z,

+ bg1 — &2 Z)x‘%
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+b{n20) = mO)AZE 2) .,

for any choice of 61, 62 > 0.

According to Lemma 2.11, Lemma 3.5 and the continuous embedding X? <
L%(Q), N > 3, we obtain

(Feeh—reea), =/ [reeh = o)A
Q
<[ra@™th = fATD] 1A

<o A7 = A2 iy @ 1A 2D

< Co||Z||X# |IZ||X_%

83 2 1
Scog |l ztpr + ozl

and, analogously,

<fe(z1)—f"(z2),z,)x,1 :L[ff(é)—f@(f)]k&, dx

2
84 2 1
<oz HZHX# + oy ”Zt”i_%’

for any choice of §3, 84 > 0, and some constant ¢y > 0.
Then, from last inequalities we deduce

d bl bar$ bcyds bazsr
—Ep(t) < — - - — Izl
dt 14 A 2 2 2(1+ A1)

aii ba> bay cod4 2

2_p- 22 lzell” 1
14+ 2 252(14-)»1) 251 2 X2
bco co
+ (35, + 35 Iel iy + b1 = 22,00 1 81— 2220

2 X2
+ <(nz(t) — M)A, z,)ﬁ + {2 = mO)AZE2) g,
from where choosing sufficiently small b, §1, §2, §3, 84 > 0 and noting that the inequal-
ity E(t) < %(||z||2 e 1) holds, it follows that we can find constants
X2 X2

C , C > 0, which depend only on b, 81, 62, 83, 84, satisfying

d z )
J— < — 1 — —
B <= CEM+Cllz|[| oy +blg1 —82.0) 1 + (81— 82,2

{020 = mo)AR z) g+ b0 - me)AZz)
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Lemma 3.8 C £ C~' 2 b
< _ e _ _
< C2 b(1) + ||Z||X% +higr—g,2) y+ (a1 —gna)
() = moIAZ z) g+ {0 —mead ) .
proving the result. O

Lemma 3.10 Given any € > 0, there exists a sufficiently large time T = T (e, E) >0
such that

J- 2 2
1185, -4 (T, 0)(zg, wo) = Sy, 1 (T, 05, wp) [,y s

< e+ Wr((zg, w), (25, wd); o1, 02),
12 .
where Yy = ’\I-'T,aux’ / , with
1.1 2 .2 1
"I’T,aux((z()’ w())s (Zoa w())v o1, UZ) = ? (‘DT,I,aux + \I"T,Z,aux + \I/T,S,aux) s
and
11 2 .2 c (T (7 2
Ur 1 (G, wh). (B wd). o1, 00) = = f f lz)I? _,_, drds,
CiJo Js Xz

1 1 2 2
\IJT,Z,aux((Zov wo)» (Zo» wo)» o1,072)

1 T T c
_ —C(T-1) _
=G /0 /; be (g1(®) gz(l),z(t))x,% dtds

LT T,
— —C(T-1) _
- Cy /0 /S ¢ (81(1) gZ(t)»Zt(l‘»X,% dtds,

1 1 2 2
VT 3.aux ((2g, wp), (25, wy), 01, 02)

1 T T
= C_1/o / e~ €Ty (1) — nl(t))AZzz(f),Zr(t))X,% dids
1 T
+C_1/0 / be™ ST ((a(1) = MmN AL (1), 2(0) )y drds.

Here, 7 = 7' — 7% is the solution of Eq. (3.9), with initial data (z(l), wé), (z%, w%) € g
and parameters o1, 0y € X. The constants C, C > Oare independent of T.

Proof By Lemma 3.9, there exist constants C, C > 0 such that

d =002
—Ep(t) < —CEp(t) + Cliz| -1y
X 2

dt
+ ((m(1) — m (1) AZZ, Zt)X_% + b{(n2(t) — 1 () AZ2, Z>x—%

@ Springer
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+b{g1 — gz,Z)X,% + (g1 —gz,Zz)X,%-

Consequently,

d A 112
E(Em)e“) < eClz| =iy + 00 = mW)AZ z)

2

+ beC (o (t) — m(D)AZF, 7)1

X 2
Cty,. _ Cry,. _
+ be~" (g1 gz,z)x,%Jre (g1 gz,zt)x,%,

and integrating the previous inequality over [s, T'] (w.r.t. t), we obtain

Ep(T) < Ep(s)e” €T

T T
= — — 2 _ —
+C / e T e oy dr+ f be T —g2.2) _y di
N N

T
+f e CT (g1 — g2, 2)
s

X
T
+/ e T () = m)AZ. )y d

T
+/ be=CT=D((na(r) — 1 (1))AZ2, z) 1 dt.

(S]]

_1dt
X 2

~

X2

Using Lemma 3.8 and the fact that |E(s)| < M for some M > 0 (inspired by
(3.8)), we conclude that

Cr ~
E(T) < 2 Me=CT—9
C

e 12 ey di 4 - " pemcr-n dt
a e llz e ol e (g1 gz,Z)X,l

2
Lt C(T—1)
JE— - _t —
+C1/s e (g1 gz,Zz)X,%dt
1

T
_ —C(T—-1) _ 2
o [T~ mepa ),y dr

|
_ —C(T—-1) _ 2
+ o ) be ((m2(2) m(t))Az,,z>X_% dt.

Integrating the above inequality over [0, T'] with respectto s, 0 < s <t < T, we
have

ot cr_y\ & 7T
E(NT < =T e—) +—/ / Iz 21y dids
Ci C CiJo Js X2
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L Y e

2 _e@—n,.

Cl/o /s be (81— 82.2) _y drds
L R e

2 e@—ny,.

C /(; /s ¢ (81— &2, Zz)X,%dtds

T T
— f f e CT=D((na(t) — () AZ2, z) 1 dids
CiJo Js X

5669

[N

[

1T .
— —C(T—1) _ 5
&l [T e —menagt gy dvas.

Lete > 0and M > %CA? Choose T > 0 such that % < €2. Then
2 11 2 25,
E(T) < € + \DT,aux((ZOv w())v (Z07 w())v o1, 02)7

1 .
where \IIT,aux((Z(l), w(1))7 (Z%v w%)7 01,02) = T("IJT,I‘aux + ¥r,2,aux + W7 3,aux), With

11 2 2 C ot 2
U7 1 aux (20, W), (25, w§), 01, 02) = — f f lz| -1y dtds,
CiJo Js X2

W7 2 (20, W), (25, w§), o1, 02) = C1/ / be €T (g) — g5,z ) _1 dtds

— —C(T-1) _
" Ci /0 /S ¢ (81 gZ’Zt)X_%dtdS,

1 1 2 2
\IJT,?),aLlX((ZOv w())a (Z()a wo)a o1, 02)

1 T T
=— f / e CT=D((na(t) — m () Az, z) 1 drds
Cl 0 K

X

1 r T
C_l/(; f be—C(T‘f)((T/z(t)_ﬂl(t))Ath,z) | dids.

X7

NI—

N

I\)

Using Lemma 2.8, we conclude that

1S5, -1 (T, 0) (20, wp) — Soy, 3 (T 0)(Zo,wo)ll -

D=

<€+ Wr((zh, w), (25, wd); o1, 02),

~ . 1
for all (Z(l), wé), (z%, wg) € Band oy, 02 € ¥ with W7 = |Wr 4ux|2. O

Lemma 3.11 The map VT aux, defined in Lemma 3.10, is a contractive functlon on
BxBxXxX. Consequently, Yt is also a contractive function on BxBxExx.
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Proof Let {0,},eny C X and {(zj, wg)}nen be a sequence of initial data in B c

X -3 x X _%. Now, foreach n € N, let (z"(¢), z} (¢)) be the corresponding solution of
the system

2+ (OAZ] + A" = )+ galx, 1), t>5, x €,
"=0, t>s5, x €0,
Z"(s) =z5 and z{(s) = wy.

Since B is bounded, it follows by Lemma 3.4 (see (3.8)) that (z"(¢), z}'(¢)) is
uniformly bounded in X I x X3,
Claim 1: There exists a subsequence such that

n
lim hm Wr 1 aux((z() ) wok) (Z()lv w() ", Ony» o) = 0.

k— 00

In fact, since

(" Jnen C (w € L0, T), X72) 1 w, € L¥((0,T), X 2))

and the embedding X~ Y e X778 s compact, it follows from Theorem 3.6, 1tem (1)

that the sequence {z"},cN is convergent, up to a subsequence, in L2((0, T),
Consequently,

W7 1 aux((Z() s wok) (Z() > w() n, Ong» Ony)|

<—/ / 12" (1) — 2" (1) 1? _lydtds

Ly — )2 bz,

—1-y

e L2(0.71).X 7 )

Claim 2: There exists a subsequence such that

n
lim lim W7 > aux((zo s w()k) (22)17 w()l) Ong» o) = 0.
k—00l—00

Indeed, at first, note that by Lemma 3.4 (see (3.8)), there exists M = M(T) > 0
such that

3 1
T2(IT)+ D2 sup g (s) — u' ()l 2y < M
5€[0,T]

and

3 1
T2(IT]+ 12 sup [[u(s) —u" (5)ll 2 < M.
s€[0,T]
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On the other hand, for each n € N, there exists a sequence {rZ} peN C R such that

p—>00

||g(x1f+rn) gn(x, t)”LZ(R L2Q) 0.

1
Thus, there exists p, > n such that || g(x, t—i—rp ) —gn(x, z‘)||L%(]R 2@) < s for
n ) n
all n € N. Besides that, for every k € N, we have

T T
/f/|<g<x,r+r;::; — gn e, DA™ — 2, ldxdrds <
0

//I(g(xt+r ) = & (X, AT (2" — 2" |dxdt

1
2
<T </ llg(x, t+r )_gnk(x t)”LZ(Q)dt)
0

T , >
<./0 ||A7 (an - an)t”LZ(Q)dt)

L7)
Z / lg et 4 rpk ) — g (6. D117 gy d1

1

T ) 2
n n
(/0 ”utk _utl”LZ(Q)dt)

3 1
<T2(|T]+ 1)2||3(x»’+r;ﬁk) _gnk(-xvt)”Li(]R,Lz(Q))
M

sup Jlu* (s) — uy (Dl 20 < —
s€[0,T]

and, similarly,

f / /I(g(x trpe ) = 8n (¥, AT = Z")|dxdrds <

STHAT]+ D7 g0t + 70 ) = gu (6 Dll 2 120))

sup [[u"*(s) — u" ()| L2
5€[0,T]

M

X
nk

Consequently, using Lemma 3.7, we conclude that

eiC(Tit)(gnk (x, 1) — gn, (x, t))Ail(an —Z")dxdids| <
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///'g(““ ) — gne (X, DA™ — '), |dxdtds

e T (gt 4 rph ) = gx,t 1t (™ — u")dxduds
T T ~
+f f / |g(x,t+rﬁi = gn (6, DIATH (" — 2 |dxdrds

—+—+ e CTD(g(x, t +rpk

1, k— o0

—g(x, t+r ))(u"" —u"’),dxdt) — 0,

and (similarly to Lemma 3.7 with u, replaced by u)

e_C(T_t) (gnk (x,1) — 8n; (x, t))A“—l(an - an)dthdS <

—+—+ e T (gt 41k )

l,k— o0

—g(x,t—i—r;')””))(u”k—u"’)dxdt‘ — 0.

In conclusion,

l,k—o00
W7o aux((ZO 7w()k) (Zo ) wo ", Ongs Ony) —> 0.

Claim 3: There exists a subsequence such that

klgn hm Wy 3 aux((z() ) w()k) (Z() ) w()l) Ony» o) = 0.

In fact, since {n, : h € R} is precompact in E1 = (C(R), dg,), it follows that
{nn}neN, up to a subsequence, is a Cauchy sequence in £;. By Lemma 3.4 (see (3.8)),
the sequences {z"},eN and {2} },en are bounded in X -3 and, consequently,

Ur.3 aux((Zo ) wok) (Z() ) w() ", Ong» Ony)

<o [ [ @ - w1 -y aras

b T T ne )
- k _ SN
+ CI/O /s‘ |77nk(t) nnz(t)|||AZ, ||X7%”Z z ”x*% dtds

T T
C/ f (M, (8) — M, (2)| dtds
0 0

l,k—o0
< CT? sup [ny (8) = 1y ()] "—> 0.
t€[0,T]
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Therefore, W7 aux is a contractive function on BxBxYXYxX. As a direct
consequence of the definition of a contractive function, it follows that

Vr = }lI/T,aux|l/2

is also a contractive functionon B x B x X x X. |

As a consequence of Lemma A.9, Lemma 2.1 and Theorem A.11, we conclude the
following result.

Theorem 3.12 The family of processes {Sy(t, s)}secx associated with system (3.3)
admits a uniform attractor Ay, (in X2 x X2) given by

As = w0,3(B) = 0, 5(B) = U wex(D), forall T €R,

1 1
DCA(X2xX2)

where B is the absorbing set established in the Lemma 3.4.

4 Upper semicontinuity of the uniform attractor

Lete € [0, 1]. This section concerns the upper-semicontinuity of the uniform attractor
A; of the family of evolution processes {S; (¢, s)}scx associated with system

Uy — Au—ne()Auy — Auy = f(u) +g(x, 1), t >, x € Q,
u=0,r>s, x €082, 4.1
u(s,x) =uo(x), ui(s,x)=vo(x), x € Q,

where 7. : R — (0, 00) is uniformly continuous satisfying

0<n <ne®) <m2 < 00,
uniformly with respect to € € [0, 1]. Moreover, we assume that lim._ o+ || —
nollLee @) = 0.
Remark 4.1 The uniform attractor AS, with respect to the problem (4.1) is obtained
by considering the hull X, = H(O’S) = 2)_0n with symbol ag(t) = (Ne(t), g(x, 1))

and € := E; x By, where E; = (C(R), dz,) and E» = W,>2(R, L2(RQ)) is endowed
with the local 2-power mean convergence topology.

Remark 4.2 By the proof of Lemma 3.4, we may conclude that there exists a bounded

1 1 1 1 .
set B C X2 x X2 such that for every bounded subset D C X2 x X2 one can obtain
an absorbing time 7p > 0 such that

U Usse.opcB,  forall > Tp.
e€l0,1]oeX
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Lemma 4.3 We have

distx%xx% (Sf,(t, s)wo, Sg(t, s)wo) -0 as € > 0"

in compacts subsets of R uniformly for wg = [ﬁg] in bounded subsets of X % X7
Proof The proof follows that of Lemma 4.13 in [3]. O

Theorem 4.4 The family of uniform attractors {A$ }ee(0,1] is upper-semicontinuous
at g = 0, that is,

. . 0
lim [dIStX%xX%( 62, AE)] =0.

e—0

Proof Suppose to the contrary that there exist § > 0 and a sequence {¢, },en C [0, 1]
with lim,,_, o €, = 0 such that

dist 1 1(AL, AY) >8, neN.
X2xX?2
Thus, one can obtain {v, },en C AEZ” such that
: 0
dlStX%xx%(v"’ As)>68, nelN. 4.2)
According to Remark 4.2, we can choose #y > 0 satisfying

U Usse.oBcB, forallt > 1.
ec[0,1]oeXx

Since A% is the uniform attractor of {Sg (t,0)}sex and B is bounded, there exists
To > to such that

8
sup dist X%(Sg(t,O)B,A%)<§, forall > Tp. 4.3)

oceX X%X
Moreover, using Theorem A.11, for each k € N, we have v; € AS, = waz(B).
Thus, there exist {x,]f},,eN C B, {U,]l‘}neN C X¢ and {l,]f}neN C [0, 00), with

lim;,— oo t,’f = 00, such that lim,,_, o Sf’y]f (t,’f , O)X,If = vg. Consequently, there exists an

integer ny > k such that for tr = tnik, ok = Or]z(k’ and X = xnik, we have
Se (t O)X v keN (I I)
< . .
” Ok ks k k”X%XX% 37

Fix kg € N such that #, > Tp. By Lemma 4.3, there exist ¢p > 0 such that

, forall € < €. “4.5)

W] o

sup [|1S€ (19, 0)x — S° (29,0
Sup 15, 10, 0% — 85, (10, Ol 11 <
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Hence, using (4.3), (4.4), and (4.5), we conclude that

dist Vky» A%) < dist Vko» S& (thy» 0)x
b opd o Ax) Sdist_ 11 (ko Sy (kg 0)xkg)

. 0 . 0 0
Fdist 1 (S5, (kg kg, Sgp (s O)xng) +dist_y 1 (S5, (1. 0)xtg. AR)
5.8 8 s
<-4 -4 =-=3,
3733

which contradicts (4.2). Therefore, the family of uniform attractors {AS;}ee(o,1] is
upper semicontinuous at €y = 0. O

5 Regularity of the uniform attractor

In this section, we provide a result regarding the regularity of that uniform attractor.
More precisely, in Theorem 5.5, we shall prove that Ay, is a bounded subset of X! x X 1.
Before that, we present some preliminary results.

Lemma 5.1 Givenr € [0, 1], there are constants K, a > 0 such that

Ly(t,0 r , < Ke ¥, It>0.
:21}; ” o ( )”L(X%XX%) X Ke fora >

Proof 1t is a consequence of Lemma 4.1 and Lemma 4.7 in [3]. O

Remark 5.2 Suppose that for some given r € [0, 1] and some given bounded set

D C X]% X Xl% the operators {L, (¢, 0)}sex and {U, (¢, 0)}5cx are well-defined
and satisfy (for some constant C > 0)

sup ||L(,(t, 0) H 1 1+ <C, forall + > 0,
ex X

and

sup sup <C, forall + > 0.

oeX [up
[to]ep

Then it is immediate that

ys(D,0):= | v (D,0) = | | S (1, 00D,

oex oeX 20

. . Lir Lgr
isboundedin X 2 x X2 .

Lemma5.3 [12, Lemma 3.1] Ler f¢ := f¢ o A. If f satisfies condition (1.4) then
there exists a constant ¢ > 0 such that

e ~ %
[7@)] <c(1+||¢||;%), X2,
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where ¢ := min {1, NTH — pNT_z}, provided N > 3.

Lemma 5.4 Suppose that f satisfies conditions (1.3) and (1.4), and let us consider

Ezmin{lN—H—p }Then

sup HUJ(I,O)[zg] <C, forall t>0 and o €%,

['ﬁg} eB

140 145
X 2 xX 2

for some constant C = C(B) > 0, where B is the absorbing set given in Lemma 3.4.

Proof The proof is analogous to the proof of [3, Lemma 5.2]. O

Theorem 5.5 The uniform attractor Ay, (in X? x X%) of system (3.3) is bounded in
X! x x!,

Proof Let us denote D = As. If x € D = Ay = wox(B) is arbitrary,
then there are sequences {t,},en C Ry, {on}neny C X, {Xn}neny C B such that

limy,— 00 So, (tn, 0)Xx, = x with lim,,_, o0 1, = oo. Using the fact that S, (#,, 0)x, =
Lg, (ty, 0)x, + U, (1, 0)x,, it follows by Lemma 5.1 that

Jim ([ Us, (1, 00y = x| g 1 =0. (5.1)

According to Lemma 5.4,

|| Us, (tn, 0)xp ||XL-2ﬁXXL-2£ <C,

for all n € N, with constant C = C(B) > 0 independent of x. As X e x X e is
reflexive we may assume without loss of generality that

145

w . 145 145
Us, (tn,0)x, —> y in X 2 x X 2,

for some y € X# X X¥ Since the embedding X% X X% < X7 x X2 is
continuous in the strong topology, if follows that (see [9, Theorem 3.10])

Uﬂ,,(tn, O)Xn i> y in X% X X%,
and from (5.1), Uy, (t,, 0)x,, Y5 xin X% X X%, that is, y = x. Consequently,

el gz e <Timinf U, (6, 00| 145 155 <C,

xX 2
. . 14& 145
and, therefore, Ay, is boundedin X 2 x X 2 .

@ Springer



Existence, regularization and upper-semicontinuity... 5677

Note that if @ = 1 then the result is proved. Now let us suppose that ¢ < 1

and set ro := & and ri := min{1, (%+§)ro} By condition (1.4) and the continuous

embeddings

I+rg 2Np 2N r—1

X2 QLW(Q)%LW(Q)%XIT

we obtain for all ¢ € X 2 that (denote r’ =5 +2(1 Vl))

IF@N 1 <elf @l gy < el 14101 ] g

) ) 5.2)
(1 +||¢||L,p(g)> (1+||¢|| T)
for some constant ¢ > 0.

Let x € D = Ayx. As done in the first case, we have x = lim,_, o S5, (t4, 0)x,
for some {x,},en C B, {on}nen C T and {ty}nen C Ry with lim,— o0 1, = 00. We
know that

Jim | Us, (1, 00y — x|y 1 =0.

Now, by Lemma 2.12, Proposition 3.2 and relation (5.2), we obtain

Ua,, (tn, 0)xy

141 141
X 2 xX 2

ty
_ Hd’_l—g ° q>1/ L_1/2.0,(tn. T) Fo, (z, ®_, Sy, (7, O)xn>dr
0

th -
< / Kewnf><||fe(u""<r,o,xn>)|| nzt g @I n )dt
0
In In
< / ce”“"”(1+||u""<r,o,xn)||"1+,O>dr+c / e D g ()| 2o dT
0 2 0

X 2

tll
< —a(t,—1) 1 op 0 P d ¢
\/0 ce ( + [lu® (7, ,xn)llxlgro r+—(1 p )Ilgll 2@, L2()°

and since by Remark 5 2 we conclude that the set ys(D,0) = Uaez yx (D, 0) is
14,
bounded in X =t X X 50 , then

14 ~0 P =P
[u (@, 0, x)|” 1y < sup Nall” 1y g < sp NlEl” 1y 1y <C
X 2 ﬁey{,n(D,()) X 2 xX 2 ﬂEyz(D,O) X2 xX 7

and this yields

| U, 12 00,

14r] 14, < Ca, forall n e N,
X 2 xX 2
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1+r 1+r
for some constant C; = C»(B) > 0 (independent of n). Since X7 x X7 s

reflexive, we may assume without loss of generality that

1+ 1+r]

U, (ty, 0)x, —> yin X 2 x X2

I+r 141 1 1.
forsome y € X 7 x X St . Since the embedding X S X7 — X2 xX72is
continuous, we have

Us, (1, 0)xy — yinX% x X7,
and then x = y. Finally,

Ixll 14 1 <liminf |Us, (ty, 00xn | 14 1174 < Co,
X 2 xX 2 n—oo X 2 xX 2

. . . 4 14r)
proving that Ay, is bounded in X 2 x X 2

Ifr; = (N +2 )ro < 1, then we continue with the previous process and we conclude
that

1+rp

1+r
Ay, is bounded in X7 x X7

where r; := min {1, (515 N42 $)2ro}. Following the same steps and after a finite number of
N

them we reach ry := min {1 (—'%)kro} = 1 for some k € N (that is, (N+2)k > 1),
which concludes this proof. O

6 Characterization of the uniform attractor

Let us now assume that ¥ is compact in E in order to apply the Theorem A.14 and
obtain a characterization of the uniform attractor, as described in the cited result. For
that we may suppose for instance that {g, : h € R} is precompact in E; (in other
words, g is translation compact in Ej). Then, by [14, Chapter V, Section 5], X is
compact in E. Let us present some auxiliary results.

Lemma 6.1 The family of processes {S;(t,$)}sex IS (E X X% X X%,Xf X

1 .
X2 ) —continuous.

Proof Let u' be a solution of system (3.3) with symbols al = (0, &) € ¥, and 1n1t1al
condition (uo, vo) i = 1, 2. Making a variable change 7' := (I — A)ul, where 7' is a
solution of (3.4) with symbol o; and initial condition (zo, wo),z = 1, 2. The difference
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7 = z! — 72 satisfies the system

Zie +mOAZ+ (1 (1) — mO)AZZ + Az = fe(2Y) — £4(22)
+21() —g2(t),t > s5,x € 2,

z=0, t>s, x €0,
_ 1 2 _ 1 2
2(s) = z9 —z5 and z:(s) = wy — wyg.

(6.1

Taking the inner product of (6.1) with z; in X~ 3 , we obtain from (3.10) the estimate

dl1l 2 2 -1 o2
— | = —|A7 2
o [2 (IIZ:IIX; izl g — ATzl

(£ = £9@D ) oy + () —m @) (AL z)

+ (1) — g2(0), z,)X_%.

=

D=

6.2)

Using Lemma 3.5, the Young inequality, and the continuous embeddings X LTI
2 i
LNiyZ(Q) and X~ <> X7, we obtain
(Feh = @),y = / [reEh = re@]A" e dx
Q

2
P11\ poi-1.2 -1
< A2 - (A Z)||L%(Q)||A ZtllL%(Q)

N

co A" = AT sy g 1A iy

< CO”Z”X;I_TV llzell -1

2 2
< collzll _p +collzell” s
X 2 X 2

for some constant cg > 0.
. . _1
By Lemma 3.4, the solution 2[2, z; are bounded in X ™2 and then

(m(0) = m@O)(Azf. 2y <Im@) = mONAZ ]y llzll

X
< ctlm@®) — ni @)1,

for some constant ¢y > 0.
Additionally, by Schwarz inequality, Young inequality, and the embedding X© <
1

X2,

(81(1) — g2(0). z1) 1

< _ 2 2
-4 < e2llg1(0) gz(l)||Xo+C||Zz||X71,

[N

for some constant ¢, > 0.
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Replacing the previous estimates in (6.2) and using Lemma 2.8, we conclude that

dl1 ~_1
y [ (uztn .+||z||2_. —IA zznz_l)]
t X 2 X 2
1 ~ 1
< c[—(nzfnzl +1lzlI* , — A uu%)]
2 X2 X2 X2

+ el ) — m@] +cllgr ) — 20172 )
for some constant ¢ > 0. Consequently, we have

lze I | + Iz,
X 2 X

[N

<z, + 1z, - ||A—%z<r>||2,.>
X 2 X 2 2

N\

= 1 212 1 212 2
<C<||Zo_zo|| 1+ llwg —wgll” _||A 220 A 220” 1
X 2 X X

R ']

t

+ / lg1(r) = g2 1720, dr + |m<r)—nz<r)|dr>ec<”>
g<||Zo—Zo|| ! + lwg —w0|| 1 +/ lg1(r) — gz(")HLz(Q)dV
+ f 1 (r) — nz(r>|dr>ec“—”,

S

that is,
llu' (1) — uz<r>||2 L+ llu) (r) — u%<r>||2
(nuo—uon2 +||v0—v0||2 / lig1(r) — g2(r)113,
L (52)

+ / 1 (r) — nz<r>|dr)ec<”>.

Hence, for any fixed r and 5, t > 5,5 € R, if

(=3} (=)

n nT) N, &n n—> g and  lim |[(ug, vp) — (o, v)ll 1 1 =0,
then
Jim @ @), uf @) = @@, w @)y =0,
and the proof is complete. O
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Theorem 6.2 (Characterization of the uniform attractor) The family of processes

{S5 (¢, 5)}sex associated with system (3.3) admits a uniform attractor Ay, in X2 X X%
given by

Ay = U Ko (), forall teR,

oED
where K (T) is the kernel section at T of process S (t, s) with symbol o.
Proof It follows by Theorem A.14. O

Corollary 6.3 The skew product flow associated with the problem (3.3) is a semigroup
with a global attractor and the conclusions of Theorem A.17 are valid.

A Appendix
In this appendix, we bring some fundamental definitions and concepts related to the

theory of evolution processes and uniform attractors. Additionally, we provide a result
concerning the existence and uniqueness of solutions.

A.1 Uniform attractors for systems of evolution processes

Let (B, dz) be acomplete metric space and {6 };cRr be a group of continuous operators
acting on &, that is, 6pc = o and 6,(6;,0) = 6,450 forallo € &, t,s € R, and for
eachs € R, 6;: E —> E is a continuous map in E. Let ¥ C E be a complete subset

of E which is invariant under {6, }cR, thatis, 6,2 = X forall s € R.

Remark A.1 In applications, the family of operators {6;},cR is typically defined as the
translations

Os0() =0(-+s), forall s eR,

for time-dependent functions o . Consequently, these are often referred to as translation
oper ators.

For a given Banach space (Y, || - ||ly) and for each 0 € X, let {S,(¢,s) : t,s €
R, t > s} be an evolution process in Y, namely,

So(t,7)Sys(T,8) = Ss(¢,s), forall t,7,s e R, t>12>5,
So(s,s) =Idy, forall s € R,

where Idy: Y — Y denotes the identity map on Y. For simplicity, we will denote
{Ss(t,8) :t,s € R, t > s} simply by {S5 (¢, 5)}.
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Definition A.2 A family {S, (¢, s)}scx of evolution processes is called a system of
evolution processes (or system for short), if the following translation-identity is
satisfied:

Sepo(t,s) =Se(t +h,s+h), forall ceX, t>s,t,5,helR. (A.1)

In this case, the parameter o is called the symbol of the process {Sy (¢, s)} and the set
¥ is called the symbol space of the system {S; (¢, §)}oex.

Remark A.3 The translation-identity (A.1) is satisfied, for instance, provided the
underlying nonautonomous evolution equation has a unique solution.

Leto € X be given. Amap u: R — Y is said to be a complete trajectory for the
process {S; (¢, 5)} if Si (¢, s)u(s) = u(t) for all t > s, with ¢, s € R. The kernel K,
of {S5(t, s)} is defined by

Ke = [u(-) :u(-) is a bounded complete trajectory for Sy (¢, 5) ]
On the other hand, for each s € R, the set

Ko(s) = {uls) : u() € Ko}

stands for the kernel section at moment s. Clearly, kernel sections satisfy the invariance
property

Se (t, Ko (s) = Ks(t), forall t >s, 1,5 €R.

By #(Z), we denote the collection of all bounded subsets of a Banach space Z.
Next, we present the definition of uniform attractors for systems of processes.

Definition A.4 A compact set Ay in Y is said to be a uniform (w.r.t. o € X) attractor
of a system {Sy (¢, 5)}scx of evolution processes in Y, if:

(i) Ay is uniformly attracting, that is, for any s € R and for any D € Z(Y) it holds

lim |:sup disty (So (7, 5) D, Az)} =0, (A.2)

—>0o0 oey

where disty (-, -) is the usual Hausdorff semidistance in Y,
(ii) (Minimality) if A% is a closed set in Y uniformly attracting, then Ay C Af..

Remark A.5 Since the symbol space X is invariant under translations, it follows by the
translation-identity (A.1) that

sup disty (S5 (t, 0)D, Ax) = sup disty (Sg,0 (1, 0) D, Asx)

oEX g€EX

= sup disty (S, (t + 7, 7) D, As),

oeX
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for all T € R. Consequently, the uniform attracting property (A.2) is equivalent to

lim |:sup disty (S (¢, 0)D, Az)i| =0,

—>0o0 ey

which implies that, under the conditions considered involving limits, the initial time
canbe settos = 0.

In the sequel, we exhibit sufficient conditions to ensure the existence of uniform
attractors. Before that, we present some definitions and auxiliary results.

Definition A.6 A set B C Y is called a uniformly absorbing set for a system
{So(t,8)}sex in Y if for any t € R and any D € A(Y), there exists a time
to = to(t, D) > T such that

U S,(t,7)D € B, forall t > 1.

oED

Definition A.7 A system {S; (¢, s)}scx in Y is said to be uniformly (w.r.t. 0 € X)
asymptotically compact, if for any fixed s € R, any sequence {#,},en C [s, 00) with
t, — oo, and any bounded sequences {u,},eny C Y and {o0,},en C X, then the
sequence {Sg” (ty, $)uy, }neN has a convergent subsequence in Y.

The Definition A.8 in the following concerns the concept of contractive func-
tions, which is an important tool for providing sufficient conditions for a system
{Ss(t, s)}sex in Y to be uniformly (w.r.t. o € ¥) asymptotically compact.

Definition A.8 Let B € #A(Y). A function W(-,-,-,-) definedon ¥ x ¥ x ¥ x &
is called a contractive function on B x B, if for any sequences {x,},ey C B and
{on}nen C Z, there are subsequences {x,, }ken and {0y, }ken such that

lim lim W(x,,, Xn;, Ong, On) = 0.
k—00l—00

The set of all contractive functions on B x B is denoted by Contr(B, X).

Lemma A.9 [25, Theorem 4.2] Let {Sy; (¢, 5)}ocx be a system in Y which admits a
bounded uniformly (w.r.t o € X¥) absorbing set B C Y. Moreover, assume that for
every € > 0, there exist T = T(B, €) > 0and V7 € Contr(B, ) such that

1S, (T, 0)x — Sop (T, O)ylly < € + Pr(x,y, 01, 02),

forall x,y € Band all 01,0, € Z. Then {S;(t, 5)}sex is uniformly (w.r.t. o € X)
asymptotically compact in Y.

Definition A.10 The uniform w-limit set of a subset D C Y at initial time T € R is
represented by

ws(D) =) |J S . 0)D.

t2toeXr>t
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For a given D € A(Y), it follows by [25, Lemma 3.2] that y € w; x(D), if and
only if there exist sequences {x,},en C D, {on}neny C Z, {th}lnen C [7, 00) With
lim, o0 t, = 00, such that lim, s Sg, (tn, T)Xy = y.

In the next result, we give necessary and sufficient conditions for a system
{Ss (2, $)}sex to admit a uniform attractor.

Theorem A.11 [25, Theorem 3.4] A system {S;(t, s)}sex in Y is uniformly (w.rt.
o € X) asymptotically compact and has a bounded uniformly absorbing set 3, if and
only if it admits a compact uniform attractor Ay given by

Az =wsB) =wrsB)= | oz,
DeA(Y)

forallt € R.

Remark A.12 TIf asystem {S, (¢, 5)}s ey admits a uniform attractor Ay, then any neigh-
borhood B of As is a uniformly absorbing set, that is, for any 7 € R and any
D € AB(Y), there exists a time tg = to(t, D) > 7 such that

U Set.0)D S B, forall > 1.

oED

Definition A.13 A system {S, (¢, §)}sex in Y is called (X x Y, Y)-continuous, if for
each t,s € R with ¢+ > s the mapping £ x Y > (0,x) +— S;(,5)x € Y is
continuous.

Under the (¥ x Y, Y)-continuity and the compactness of the symbol space X, we
may characterize the uniform attractor by kernel sections.

Theorem A.14 [25, Theorem 3.8] Let Y be a Banach space and ¥ be a compact metric
space. Assume that a family of processes {Ss(t, 1)}, 0 € X, satisfies the translation
identity (A.1), as well as the following conditions:

(i) The translation semigroup {0;};>0 is continuous on X;
(1) {Ss(t, 1)}, 0 € %, is norm-to-weak continuous on Y ;
(iii) {S5(t, 7)}, 0 € X, has a bounded uniformly (w.r.t. o € X) absorbing set By in
Y;
1v) {Ss(, 1)}, 0 € Z, is uniform (w.r.t. ¢ € X) asymptotically compact inY.

Then, {S,(t, 1)}, 0 € X, has a uniform (w.rt. o € X) attractor s, satisfying

s = wo, = (By) = U Ky (s), forall s €R,

oEX

where ICy (s) is the section at t = s of the kernel I of the process {Sy (t, T)} with
symbol .
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The characterization of a uniform attractor of a (¥ x Y, Y)-continuous system via
kernel sections allows us to obtain a lifted negative semi-invariance

As = U Ko (1) = U Sy (¢, 00Ky (0) C U S, (t,0) Ay, forall ¢ > 0.

oEX g€EL oED

A.2 Skew product flow: global attractors and uniform attractors

Let (Y, || - |ly) be a Banach space, ¥ be a compact symbol space with {0;};cr as being
a group of continuous operators acting on X, and let {S, (¢, s)}s<x be a system in Y.

Definition A.15 A skew product flow associated with the system {S; (¢, s)}scx is a
family of maps {T'(t): ¥ x ¥ — Y x X, t > 0} defined by

T(t)(% G) = (So'(tv O))U 0[0),

forevery (y,o0) € Y x X andt > 0.

Remark A.16 1f a system {S,; (¢, 5)}scx is (Y X X, Y)-continuous, then the associated
skew product flow is a semigroup.

Theorem A.17 [14, Theorem 5.1] Let {S; (¢, s)}sex be uniformly (w.rt. o € %)
asymptotically compact system which is (¥ x Y, Y)-continuous. The following
properties hold:

(i) The skew product {T(t): Y x ¥ — Y x X, t > 0} has a global attractor.
Moreover, this global attractor A satisfies

A= Ks(x) x {0} forallt eR.

oceX
(i1) The projections Ty and Iy, defined by

My Y X ¥ — )y
(u,0) —> Myx(u,0) =0

and

My Y x ¥ — Y
(u,0) —> IMy(u,0) =u

Satisfy HZ(A) = Y and HY(A) = AE = UO'GE ICO(T), where AE is the
uniform attractor of {Ss (t, $)}sex.
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A.3 Existence and uniqueness of solutions

This last appendix section concerns with an existence and uniqueness result that will
be applied to solve problem (1.1). Let us consider (Y, || - ||y) a Banach space.

Definition A.18 A map F: R x Y — Y is called locally Lipschitz continuous in
Y uniformly in 7 on bounded intervals, if for any B € Z(Y) and any interval I =
[t1, ©2] C R there exists M = M (B, I) > 0 such that

|F@.x) = F@t,y)|, < Mllx —yly, forall x,yeB, rel.

Definition A.19 Amap F: R x Y — Y is called locally bounded in Y uniformly in
t on bounded intervals, if for any B € Z(Y) and any interval I = [t1, 2] C R, there
exists M = M (B, I) > 0 such that

|Fa. 0|, <M, forall xeB, rel.

Theorem A.20 (Existence and uniqueness of solutions) Let F € C(R x Y,Y) and
Q(): Y —> Y be a bounded linear operator defined for allt € R.IfR > t —>
Q(t) € L(Y) is continuous in the uniform operator topology and F is locally Lipschitz
continuous in Y and locally bounded in Y (both uniformly in t on bounded intervals),
then for any s € R and any yog € Y there exists T = T"*(yg, s) > s such that
the initial value problem

d
d—f +OWy=F(t.y). t>s

y(s) = yo,

admits a unique solution y(-) = y(-,s; yo) € C([s, Tmaxy, Y) Nnc! ((s, Tmaxy, Y)
which satisfies in Y the variation of constants formula

t
y(t, s5 ¥0) =L(t,S)yo+/ L(t,T)F(z, y(t, s; yo)) dr,

where L(t,s) = I — f; Q(t)L(z,s)dr, t = s. Moreover, either T = o0 or

lim —|ly(@)|y = oo.
t— (Tmax )=

Proof The proof of the theorem is adapted from [3, Theorem 2.6]. For further details
on this, we refer the reader to [2, 21, 23]. O
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