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Abstract
We investigate the forward dynamics of a nonautonomous semilinear wave-type evo-
lution problem, which models propagation phenomena in nonlinear elastic rods and
ion-acoustic waves. We establish global well-posedness and prove the existence of
a family of uniform attractors under appropriate growth and dissipativity conditions.
Additionally, we demonstrate upper-semicontinuity in a suitable space and derive reg-
ularity results in a more refined space. Finally, we characterize the uniform attractor
through kernel sections for the problem under consideration.
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1 Introduction

In this paper, we investigate the forward dynamics of the following nonautonomous
semilinear second-order evolution problem

⎧
⎪⎨

⎪⎩

utt − �u − η(t)�ut − �utt = f (u) + g(x, t), t > s, x ∈ �,

u = 0, t � s, x ∈ ∂�,

u(s, x) = u0(x), ut (s, x) = v0(x), x ∈ �,

(1.1)

where � is a bounded C2 smooth domain in RN with N � 3 and η : R −→ (0,∞) is
a uniformly continuous function satisfying

0 < a1 � η(t) � a2 < ∞, t ∈ R. (1.2)

The nonlinear term f : R −→ R is a locally Lipschitz function that satisfies the
following dissipativity condition:

lim sup
|s|→∞

f (s)

s
< λ1, (1.3)

where λ1 > 0 denotes the first eigenvalue of the operator−�with Dirichlet boundary
conditions on �. Additionally, f satisfies the polynomial growth condition:

| f (s1) − f (s2)| � c|s1 − s2|
(
1 + |s1|ρ−1 + |s2|ρ−1), s1, s2 ∈ R, (1.4)

for some constant c > 0 and exponent 1 < ρ < N+2
N−2 and

f (s)s �
∫ s

0
f (r) dr := F(s), s ∈ R. (1.5)

As a consequence of (1.4), the nonlinear term f also satisfies:

| f (s)| � c(1 + |s|ρ), s ∈ R, (1.6)

for some constant c > 0. Finally, the external source g is a differentiable function
satisfying the conditions

g, gt ∈ L2
b(R, L2(�)), (1.7)

where L2
b(R, L2(�)) is a subspace of L2

loc(R, L2(�)), given by

L2
loc(R, L2(�)) =

{

h : R → L2(�)

∣
∣
∣

∫ t2

t1
‖h(s)‖2L2(�)

ds < ∞, [t1, t2] ⊂ R

}

,
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with norm

‖h‖2
L2
b(R,L2(�))

= sup
t∈R

∫ t+1

t
‖h(s)‖2L2(�)

ds < ∞

and

W 1,2
b (R, L2(�)) :=

{
h ∈ W 1,2

loc (R, L2(�))

∣
∣
∣ h, ht ∈ L2

b(R, L2(�))
}

with norm

‖h‖2
W 1,2

b (R,L2(�))
= ‖h‖2

L2
b(R,L2(�))

+ ‖ht‖2L2
b(R,L2(�))

. (1.8)

The model presented in (1.1) is inspired by its autonomous counterpart, widely
studied in the context of asymptotic behavior (see [12, 19, 20, 26]) and references
therein). It has important physical applications, such as wave propagation in nonlinear
elastic rods and ion-acoustic waves, see [6, 18, 22, 30]. When the term �utt is omit-
ted, (1.1) reduces to the classical strongly damped wave equation [11]. For related
nonautonomous models, see [4, 5, 7, 10, 11, 13].

From a historical point of view, in [12], problem (1.1) was considered in its
autonomous version with g = 0 and η(t) ≡ μ (a constant function) and the authors
were concerned about the well-posedness, existence and uniqueness of global solu-
tions. Furthermore, the existence of a gradient-like global attractor for the problemwas
established using the semigroup approach. In [3], the authors significantly expanded
upon the analysis introduced in [12] considering for that time a nonautonomous term
(expressed by the time-dependent function η(t), but yet with g = 0) and provided a
complete survey about this problem in a pullback setting, ensuring the existence and
robustness of a family of pullback exponential attractors, as well as establishing the
existence of a pullback attractor whose sections possess uniformly bounded finite frac-
tal dimension. Moreover, in [3], the authors also established the upper semicontinuity
and regularity of the pullback attractor.

In this work, we revisit the nonautonomous problem, this time focusing on its
forward dynamics, in the sense of uniform attractors. More precisely, we consider
problem (1.1) with both time-dependent functions g(t) and η(t), and establish for
the first time in the literature the existence, regularity, and upper semicontinuity of
the uniform attractor associated with this problem. It is worth mentioning that the
addition of a time-dependent function g(t) satisfying assumption (1.7) (rather than a
direct boundedness condition as used in previous nonautonomous second-orderworks)
brings a considerable difficulty in establishing the existence of solutions and, conse-
quently, the existence of its uniform attractor, since the construction of the required
symbol space driving the system is strictly related to the nonautonomous terms of
the problem. Still regarding the symbol space, in this work we prove the existence
of a uniform attractor for (1.1) without necessarily requiring its symbol space to be a
compact set (this compactness is a standard hypothesis, for instance, in the classical
reference [14]). Moreover, we address also that, even with the uniform attractor not

123



5642 V. T. Azevedo et al.

satisfying an invariance property, we were able to apply the bootstrapping technique in
order to prove its regularization (for instance, in [3], this property was proved strongly
based on the natural invariance of pullback attractors, building on the developments
presented in [12]) and it may provide a framework for extending the same technique
to a broader class of nonautonomous evolution equations whose asymptotic behavior
is described by uniform attractors.

Finally, compared to [3], where the existence of the pullback attractor was obtained
by a smoothing property, this work draws inspiration from [25]. In that paper, the
authors studied the forward dynamics of a wave equation with nonlinear damping and
developed a method (see [25, Theorem 4.2]) based on contractive functions to verify
uniform asymptotic compactness, which is crucial for establishing the existence of
uniform attractors. The method described in [25] was first inspired by results due to
Chueshov and Lasiecka for autonomous systems as given in [16, Proposition 3.2] and
[17, Proposition 2.10].

In addition, still related to [25], where a general (possibly nonlinear) damping
term of the form h(ut ) is considered, our case features a linear damping term given
by h(ut ) = �ut , but with a nonautonomous coefficient η(t), which adds further
complexity to the model. Notably, the presence of the term �utt in our equation
is nonstandard in the classical literature, highlighting both the originality and the
analytical challenges addressed in this work.

In general, compared with earlier results, we highlight the achievement of signifi-
cant advances concerning the global well-posedness of problem (1.1) within this new
forward nonautonomous framework. Furthermore, we contribute to a deeper under-
standing of its asymptotic behavior by providing a detailed forward analysis of problem
(1.1), including, for the first time, the existence, regularity, and upper semicontinu-
ity of the uniform attractor associated with this problem. These contributions extend
the theory to nonautonomous cases and consolidate key qualitative properties of the
corresponding dynamical system.

Back to the analysis of the evolution problem, under the previous assumptions,
we consider system (1.1) in the Hilbert space H1

0 (�) × H1
0 (�) and according to the

approaches outlined in [3] and [12],wewill conduct a detailed analysis of problem (1.1)
by introducing the change of variables (t, z), with z = (I −�)u. This transformation
leads us to the following system:

⎧
⎪⎨

⎪⎩

ztt + η(t)�zt + �z = f e(z) + g(x, t), t > s, x ∈ �,

z = 0, t � s, x ∈ ∂�,

z(s) = z0 and zt (s) = w0,

(1.9)

where � = I − (I − �)−1 ∈ L(H−1(�)), f e = f ◦ (I − �) and H−1(�) is
the extrapolation space of H2(�) ∩ H1

0 (�) generated by the realization of −� in
H2(�)∩ H1

0 (�). The symbol L(X) denotes the space of all bounded linear operators
from a Banach space X into itself.
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The change of variable w = zt now leads us to the following first-order problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d

dt

[
z

w

]

+ Q(t)

[
z

w

]

= F
(

t,

[
z

w

])

, t > s,

[
z(s)

w(s)

]

=
[

z0
w0

]

,

(1.10)

where Q(t) ∈ L(H−1(�) × H−1(�)) is given by

Q(t) =
[
0 −I
� η(t)�

]

=
[

0 −I
I − (I − �)−1 η(t)(I − (I − �)−1)

]

(1.11)

and F : R × H−1(�) × H−1(�) −→ H−1(�) × H−1(�) is given by

F
(

t,

[
z
w

])

=
[

0
f e(z) + g(x, t)

]

,

[
z
w

]

∈ H−1(�) × H−1(�). (1.12)

The article is organized as follows: In Sect. 2, we present the mathematical formu-
lation of the problem and the main theoretical results ensuring the well-posedness of
problem (1.1) in H1

0 (�) × H1
0 (�). Next, in Sect. 3, we construct the symbol space

equipped with a suitable topology, which is explored in more detail in this section.
Without assuming the compactness of the symbol space, we define a family of evolu-
tion processes associated with system (3.3) and establish the existence of the uniform
attractor using the contractive functions technique (see Lemma A.9). Moreover, we
establish further properties, including the upper semicontinuity of this family of uni-
form attractors and its regularity in (H2(�) ∩ H1

0 (�)) × (H2(�) ∩ H1
0 (�)), which

are discussed in Sects. 4 and 5, respectively. Finally, in Sect. 6, under more restric-
tive conditions, we assume the compactness of the symbol space with respect to the
topology introduced in Sect. 3 to obtain a characterization of the uniform attractor
via kernel sections (see Theorem 6.2). Additionally, we have included an Appendix A
that presents some basic definitions and abstract results on the existence and unique-
ness of solutions, as well as the theory of uniform attractors for systems of evolution
processes. These concepts are essential for the comprehensive understanding of this
work.

2 Local and global well-posedness results

Let us denote by � the closed extension in H−1(�) of the Dirichlet Laplacian with
domain H2(�) ∩ H1

0 (�), where � is a bounded smooth domain in R
N , N � 3. By

{Xα : α ∈ R} we mean the double-sided fractional power scale generated by (X , Ã),
where X = L2(�) and Ã = I −� (see [1] or [21]). In this case, we set� = I − Ã−1.
It is well-known that X− 1

2 = H−1(�), X
1
2 = H1

0 (�) and X1 = H2(�) ∩ H1
0 (�)

(see [23] or [27]).
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In order to ensure the local and global well-posedness of solutions for problem

(1.9) in X− 1
2 × X− 1

2 (which is equivalent to solve (1.10) in X− 1
2 × X− 1

2 ) we will
apply the techniques developed in [3, 12, 29]. Consequently, we shall be able to obtain

the same results for (1.1) in X
1
2 × X

1
2 . For that, we will consider evolution processes

{S−1/2(t, s) : t � s} in X− 1
2 × X− 1

2 and {S(t, s) : t � s} in X
1
2 × X

1
2 associated

respectively with the problems (1.9) and (1.1), which will be seen to be closely related
to each other (see Theorems 2.14 and 2.16). To begin understanding the relationship
between S and S−1/2, let us first recall an essential result.

Lemma 2.1 [12, Lemma 2.3] Let s � 0 and r � − 1
2 . Then the map given by


s : Xr × Xr −→ Xr+s × Xr+s
[
x1
x2

]


−→
[
Ã−s 0
0 Ã−s

] [
x1
x2

]

is an isometric isomorphism. We denote
−1
s = 
−s . In particular,
1 is an isometric

isomorphism from X− 1
2 × X− 1

2 into X
1
2 × X

1
2 .

To the aimof this first part concerning the proof of the localwell-posedness property,
we shall remember some auxiliary results such as the continuity of the family of
operators Q and the Lipschitz condition on the map F . Before that, we recall some
important continuous embeddings that will used throughout this work:

Hs
0 (�) ↪→ Hs(�) ↪→ Lr (�) ↪→ L2(�), if

1

2
� 1

r
� 1

2
− s

N
> 0, (2.1)

see Theorem 1.1, Chapter 2, in [14], and

Hs
0 (�) ↪→ X

s
2 ↪→ Hs(�), for all s ∈ R,

see Theorem 16.1 in [28]. Remember we are assuming that N � 3. By duality, we
obtain

L2(�) ↪→ Lr ′
(�) ↪→ X− s

2 , if
1

r
+ 1

r ′ = 1 and
1

2
� 1

r
� 1

2
− s

N
> 0. (2.2)

Lemma 2.2 [3, Lemma 3.2] The map R � t 
−→ Q(t) ∈ L(X− 1
2 × X− 1

2 ) defined in
(1.11) is continuous in the uniform operator topology.

Lemma 2.3 [12, Lemma 2.4] Assume that f : R −→ R satisfies condition (1.4). Then

f e : X− 1
2 −→ X− 1

2

φ 
−→ f e(φ) : � ⊂ R
N −→ R

x 
−→ f e(φ)(x) := f
(
Ã−1φ(x)

)

defines an operator from X− 1
2 into X− 1

2 which is Lipschitz continuous in bounded

subsets of X− 1
2 .
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Lemma 2.4 Assume that f satisfies condition (1.4) and g satisfies condition (1.7).
Then the operator F : R× X− 1

2 × X− 1
2 −→ X− 1

2 × X− 1
2 defined in (1.12) is locally

Lipschitz continuous in X− 1
2 × X− 1

2 uniformly in t on bounded intervals.

Proof It is an immediate consequence of Lemma 2.3 and the definition of F . 
�
Lemma 2.5 Under the same hypotheses of Lemma 2.4, the mapping F is locally

bounded in X− 1
2 × X− 1

2 uniformly in t on R.

Proof Let D ∈ X− 1
2 × X− 1

2 be an arbitrary bounded set. If t ∈ R and

[
φ

ψ

]

∈ D then

∥
∥
∥
∥F

(

t,

[
φ

ψ

])∥
∥
∥
∥
X− 1

2 ×X− 1
2

= ∥
∥ f e(φ) + g(t)

∥
∥
X− 1

2
�

∥
∥ f e(φ)

∥
∥
X− 1

2
+ c1

∥
∥g(t)

∥
∥
X ,

for some c1 > 0. On the other hand, by using (1.6) and the embeddings (2.1)–(2.2),
we obtain

∥
∥ f e(φ)

∥
∥
X− 1

2
� c2

∥
∥ f e(φ)

∥
∥
L

2N
N+2 (�)

� c3

(

1 + ∥
∥ Ã−1φ

∥
∥ρ

L
2Nρ
N+2 (�)

)

� c4

(

1 + ∥
∥ Ã−1φ

∥
∥ρ

X
1
2

)

= c4

(

1 + ∥
∥φ

∥
∥ρ

X− 1
2

)

.

It follows by [24, Proposition 7.1] that

‖g(t)‖L2(�) � sup
r∈[t,t+1]

‖g(r)‖L2(�) � C‖g‖W 1,2((t,t+1),L2(�))

� C

(

‖g‖2L2((t,t+1),L2(�))
+ ‖gt‖2L2((t,t+1),L2(�))

) 1
2

� C

(∫ t+1

t
‖g(r)‖2L2(�)

dr +
∫ t+1

t
‖gt (r)‖2L2(�)

dr

) 1
2

� C

(

sup
t∈R

∫ t+1

t
‖g(r)‖2L2(�)

dr + sup
t∈R

∫ t+1

t
‖gt (r)‖2L2(�)

dr

) 1
2

� C

(

‖g‖2
L2
b(R,L2(�))

+ ‖gt‖2L2
b(R,L2(�))

) 1
2

� C‖g‖W 1,2
b (R,L2(�))

,

where C = 2 (see the proof of [24, Proposition 7.1] to notice that it is indeed
independent of t ∈ R).

Consequently, by (1.7), we conclude that there is a constant M = M(D) > 0 such
that

∥
∥
∥
∥F

(

t,

[
φ

ψ

])∥
∥
∥
∥
X− 1

2 ×X− 1
2

� M,
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and the result is proved. 
�
ByLemmas 2.2, 2.4, and 2.5, the conditions of TheoremA.20 are satisfied, ensuring

the local well-posedness of solutions to problem (1.9).

Theorem 2.6 Assume that f satisfies (1.4) and g satisfies (1.7). Then for each z0, w0 ∈
X− 1

2 and s ∈ R, there exists a maximal time of existence Tmax = Tmax (z0, w0) > s
such that the problem (1.9) admits a unique solution

z(·) = z(·, s, z0) ∈ C
(
[s, Tmax ), X− 1

2

)
∩ C1

(
(s, Tmax ), X− 1

2

)

defined on the maximal interval of existence [s, Tmax ), where either Tmax = ∞ or

lim
t→(Tmax )−

(∥
∥z(t, s, z0)

∥
∥2

X− 1
2

+ ∥
∥zt (t, s, w0)

∥
∥2

X− 1
2

)
= ∞.

Proof Since (1.9) is equivalent to system (1.10) (with w = zt ), the result is a
consequence of Theorem A.20 applied to the first order problem (1.10). 
�

The local well-posedness of solutions to the non-autonomous second-order semi-
linear evolution equation (1.1) follows from Lemma 2.1, combined with Theorem
2.6.

Theorem 2.7 (Local well-posedness) Assume that f satisfies (1.4) and g satisfies

(1.7). Then for each u0, v0 ∈ X
1
2 and s ∈ R, there exists a maximal time of existence

τmax
u0,v0 > s such that the problem (1.1) admits a unique solution

u(·) = u(·, s, u0) ∈ C
(
[s, τmax

u0,v0), X
1
2

)
∩ C1

(
(s, τmax

u0,v0), X
1
2

)

defined on the maximal interval of existence [s, τmax
u0,v0), where either τmax

u0,v0 = ∞ or

lim
t→(τmax

u0,v0
)−

(∥
∥u(t, s, u0)

∥
∥2

X
1
2

+ ∥
∥ut (t, s, v0)

∥
∥2

X
1
2

)
= ∞.

The next step is to prove the global well-posedness of solutions to the problem
(1.9), and consequently to the problem (1.1). In order to do that, we first recall some
auxiliary results.

Lemma 2.8 [3, Lemma 3.7] The inequality

λ1

1 + λ1
‖ψ‖2

X− 1
2

� ‖ψ‖2
X− 1

2
− ‖ Ã− 1

2 ψ‖2
X− 1

2

holds for all ψ ∈ X− 1
2 .
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Remark 2.9 As a direct consequence of Lemma 2.8, we have the Poincaré inequality

‖ Ã− 1
2 ψ‖2

X− 1
2

� 1

1 + λ1
‖ψ‖2

X− 1
2
, ψ ∈ X− 1

2 .

Lemma 2.10 [3, Lemma 3.8] Assume that f satisfies conditions (1.3) and (1.4). Then
the following properties hold:

(i) There exist ν0 ∈ (0, λ1) and K1 > 0 such that

∫

�

f ( Ã−1ψ) Ã−1ψ dx � (λ1 − ν0)

1 + λ1
‖ψ‖2

X− 1
2

+ K1,

for all ψ ∈ X− 1
2 .

(ii) There exist ν0 ∈ (0, λ1) and K2 > 0 such that

∫

�

∫ Ã−1ψ

0
f (s) dsdx � (λ1 − ν0)

2(1 + λ1)
‖ψ‖2

X− 1
2

+ K2,

for all ψ ∈ X− 1
2 .

Lemma 2.11 [12, Lemma 2.1] The following equality holds:

〈
Ã− 1

2 φ, Ã
1
2 ψ

〉

X =
∫

�

φψ dx, φ ∈ L
2N
N+2 (�), ψ ∈ X

1
2 .

Lemma 2.12 [15, Lemma 2.1] For every t, τ, β ∈ R with t � τ , β > 0 and g ∈
L2
b(R, L2(�)), we have

sup
t�τ

∫ t

τ

e−β(t−s)‖g(s)‖2L2(�)
ds � 1

1 − e−β
‖g‖2

L2
b(R,L2(�))

.

In the following, Lemma 2.13 deals with a boundedness result for the solution of
problem (1.9).

Lemma 2.13 Assume that conditions (1.3), (1.4) and (1.7) hold and let z0, w0 ∈ X− 1
2

and s ∈ R be given. Then z(·, s, z0) and zt (·, s, w0) satisfy for some constant C =
C(z0, w0) > 0 the inequality

‖z‖2
X− 1

2
+ ‖zt‖2

X− 1
2

� C
(
e(t−s) + 1

1 − e
‖g‖2

L2
b(R;L2(�))

)

in [s, Tmax ), where Tmax = Tmax (z0, w0) > s comes from Theorem 2.6.
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Proof According to Theorem 2.6, there exists a solution z(·) = z(·, s, z0) of (1.9) in
X− 1

2 × X− 1
2 defined on some interval [s, Tmax ). Taking the inner product of (1.9)

with zt in X− 1
2 , we obtain the following equality

〈ztt , zt 〉
X− 1

2
+ η(t)

〈
(I − Ã−1)zt , zt

〉

X− 1
2

+ 〈
(I − Ã−1)z, zt

〉

X− 1
2

= 〈
f e(z), zt

〉

X− 1
2

+ 〈
g(t), zt

〉

X− 1
2

for all t ∈ [s, Tmax ). Consequently,

d

dt

[
1

2

(

‖zt‖2
X− 1

2
+ ‖z‖2

X− 1
2

− ‖ Ã− 1
2 z‖2

X− 1
2

)]

− 〈
f e(z), zt

〉
X− 1

2

= −η(t)

(

‖zt‖2
X− 1

2
− ‖ Ã− 1

2 zt‖2
X− 1

2

)

+ 〈
g(t), zt

〉

X− 1
2
.

(2.3)

Setting F(t) =
∫ t

0
f (τ ) dτ , it follows by Lemma 2.11 that

〈
f e(z), zt

〉

X− 1
2

= 〈
Ã− 1

2 f e(z), Ã
1
2 Ã−1zt

〉

L2(�)
=

∫

�

f ( Ã−1z) Ã−1zt dx

=
∫

�

d

dt

(
F( Ã−1z)

)
dx = d

dt

(∫

�

F( Ã−1z) dx

)

.

Thus, Eq. (2.3) becomes

d

dt

[
1

2

(

‖zt‖2
X− 1

2
+ ‖z‖2

X− 1
2

− ‖ Ã− 1
2 z‖2

X− 1
2

)

−
∫

�

F
(
Ã−1z

)
dx

]

=

= −η(t)

(

‖zt‖2
X− 1

2
− ‖ Ã− 1

2 zt‖2
X− 1

2

)

+ 〈
g(t), zt

〉

X− 1
2
.

(2.4)

By Lemma 2.10, (ii), one can obtain ν0 ∈ (0, λ1) and K2 > 0 such that

−
∫

�

F
(
Ã−1z

)
dx � − (λ1 − ν0)

2(1 + λ1)
‖z‖2

X− 1
2

− K2. (2.5)

Condition (1.2) and Lemma 2.8 imply the following estimate

−η(t)

(

‖zt‖2
X− 1

2
− ‖ Ã− 1

2 zt‖2
X− 1

2

)

� − a1λ1
1 + λ1

‖zt‖2
X− 1

2
� 0, (2.6)

and by Lemma 2.11, Young’s and Poincaré’s inequalities, we have

−〈
g(t), zt

〉

X− 1
2

= −
∫

�

g(t) Ã−1zt dx � c‖g(t)‖2X + ν0

4
‖ Ã− 1

2 zt‖2
X− 1

2

� c1‖g(t)‖2X + ν0

4(1 + λ1)
‖zt‖2

X− 1
2
,

(2.7)
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with c1 > 0 and we used Remark 2.9.
Combining the estimates (2.4), (2.5), (2.6), and (2.7), we can write

d

dt

[
1

2

(

‖zt‖2
X− 1

2
+ ‖z‖2

X− 1
2

− ‖ Ã− 1
2 z‖2

X− 1
2

)

−
∫

�

F
(
Ã−1z

)
dx

]

�

� c1‖g(t)‖2X + ν0

4(1 + λ1)
‖zt‖2

X− 1
2

� K2 + c1‖g(t)‖2X + λ1

4(1 + λ1)
‖zt‖2

X− 1
2

−
∫

�

F
(
Ã−1z

)
dx + λ1

2(1 + λ1)
‖z‖2

X− 1
2

Lemma 2.8
� c2 + c2‖g(t)‖2X + 1

2

(
‖zt‖2

X− 1
2

+ ‖z‖2
X− 1

2
− ‖ Ã− 1

2 z‖2
X− 1

2

)

−
∫

�

F
(
Ã−1z

)
dx,

where c2 � max{K2, c1}. By the Gronwall’s inequality, we have
[
1

2

(

‖zt‖2
X− 1

2
+ ‖z‖2

X− 1
2

− ‖ Ã− 1
2 z‖2

X− 1
2

)

−
∫

�

F
(
Ã−1z

)
dx

]

� c̃e(t−s) +
∫ t

s
e(t−r)(c2 + c2‖g(r)‖2X

)
dr

� c
(
e(t−s) +

∫ t

s
e(t−r)‖g(r)‖2X dr

)
, t ∈ [

s, Tmax),

(2.8)

for some constant c = c(z0, w0) > 0. But, since

1

2

(

‖zt‖2
X− 1

2
+ ‖z‖2

X− 1
2

− ‖ Ã− 1
2 z‖2

X− 1
2

)

−
∫

�

F
(
Ã−1z

)
dx �

Lemma 2.8
� 1

2
‖zt‖2

X− 1
2

+ 2λ1
4(1 + λ1)

‖z‖2
X− 1

2
−

∫

�

F
(
Ã−1z

)
dx

(2.5)

� 1

2
‖zt‖2

X− 1
2

+ 2λ1
4(1 + λ1)

‖z‖2
X− 1

2
− (λ1 − ν0)

2(1 + λ1)
‖z‖2

X− 1
2

− K2.

� 1

2
‖zt‖2

X− 1
2

+ 2ν0
4(1 + λ1)

‖z‖2
X− 1

2
− K2,

it follows from (2.8) and Lemma 2.12 that

‖z‖2
X− 1

2
+ ‖zt‖2

X− 1
2

� C
(
e(t−s) +

∫ t

s
e(t−r)‖g(r)‖2X dr

)

� C
(
e(t−s) + sup

t�s

∫ t

s
e(t−r)‖g(r)‖2X dr

)

� C
(
e(t−s) + 1

1 − e
‖g‖2

L2
b(R;L2(�))

)
, t ∈ [s, Tmax ),
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for some constant C = C(z0, w0) > 0. 
�
As a consequence of Lemma 2.13, Theorem 2.6 and Theorem A.20, we can state

the following global well-posedness result on solutions of the problem (1.9).

Theorem 2.14 Assume that conditions (1.3), (1.4) and (1.7) hold and let z0, w0 ∈ X− 1
2

and s ∈ R be given. Then the solution z(·) = z(·, s, z0) of (1.9) exists globally in

time.Moreover, the relation S−1/2(t, s)
[ z0

w0

]
=

[
z(t,s,z0)
zt (t,s,w0)

]
defines an evolution process

in X− 1
2 × X− 1

2 associated to the problem (1.9) which satisfies in X− 1
2 × X− 1

2 the
variation of constants formula

S−1/2(t, s)

[
z0
w0

]

= L−1/2(t, s)

[
z0
w0

]

+U−1/2(t, s)

[
z0
w0

]

, (2.9)

where

L−1/2(t, s) = I −
∫ t

s
Q(τ )L−1/2(τ, s) dτ (2.10)

and

U−1/2(t, s)

[
z0
w0

]

=
∫ t

s
L−1/2(t, τ )F

(

τ, S−1/2(τ, s)

[
z0
w0

])

dτ. (2.11)

Next, we state the version of Lemma 2.13 concerning the boundedness of the
solution of problem (1.1), and also the global well-posedness result of solution of the
problem (1.1). These results are consequences of Lemma 2.13, Theorem 2.14, and
Lemma 2.1.

Lemma 2.15 Assume that conditions (1.3), (1.4) and (1.7) hold and let u0, v0 ∈ X
1
2

and s ∈ R be given. Then u(·, s, u0) and ut (·, s, v0) satisfy for some constant C =
C(u0, v0) > 0 the inequality

‖u‖2
X

1
2

+ ‖ut‖2
X

1
2

� C
(
e(t−s) + 1

1 − e
‖g‖2

L2
b(R;L2(�))

)

in [s, τmax
u0,v0), where τmax

u0,v0 > s comes from Theorem 2.7.

Theorem 2.16 (Global well-posedness) Assume that conditions (1.3), (1.4) and (1.7)

hold and let u0, v0 ∈ X
1
2 and s ∈ R be given. Then the solution u(·) = u(·, s, u0) of

(1.1) exists globally in time. Moreover, the relation S(t, s)
[u0
v0

]
=

[
u(t,s,u0)
ut (t,s,v0)

]
defines

an evolution process in X
1
2 × X

1
2 associated with the problem (1.1), which is given

by S(t, s) = 
1S−1/2(t, s)
−1, and satisfies in X
1
2 × X

1
2 the variation of constants

formula

S(t, s)

[
u0
v0

]

= L(t, s)

[
u0
v0

]

+U (t, s)

[
u0
v0

]

,
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where

L(t, s) = 
1L−1/2(t, s)
−1 and U (t, s) = 
1U−1/2(t, s)
−1,

and more specifically

U (t, s)

[
u0
v0

]

=
∫ t

s
L(t, τ )
1F

(

τ,
−1S(τ, s)

[
u0
v0

])

dτ.

3 Existence of the uniform attractor

3.1 Construction of the symbol space associated with the problem (1.1)

Let y(t) = (u(t), ut (t)) and Y = H1
0 (�) × H1

0 (�) endowed with the finite energy
norm

‖y‖Y = {‖u‖2
H1
0 (�)

+ ‖ut‖2H1
0 (�)

} 1
2 .

By considering σ0(t) = (η(t), g(x, t)) and setting Aσ0(t)(u, v) = (v,�u + �vt +
f (u) + η(t)�v + g(x, t)), then the nonautonomous system (1.1) can be rewritten in
the operator form

{
∂t y = Aσ0(t)(y),

y(s) = (u0, v0).
(3.1)

The function σ0(t) = (η(t), g(x, t)) is known as the time symbol (or symbol) of
Eq. (3.1). The reader may consult [14] for more details. Let

ηh(t) = η(t + h) and gh(x, t) = g(x, t + h),

for all t, h ∈ R and x ∈ �. Now, define

�0 = {(ηh, gh) : h ∈ R} ⊆ {ηh : h ∈ R} × {gh : h ∈ R}.

Since η ∈ C(R) is uniformly continuous and {ηh ∈ C([t1, t2],R+) : h ∈ R} is pre-
compact in C([t1, t2],R+) for all bounded subinterval [t1, t2] ⊂ R (Arzelá–Áscoli),
it follows by [14, Proposition 2.1, Chapter V] that

{ηh : h ∈ R} is precompact in �1 = (C(R), d�1),

with topology generated by the Fréchet metric d�1(ξ1, ξ2) = ∑∞
n=1

1
2n

(
dn�1

(ξ1,ξ2)

1+dn�1
(ξ1,ξ2)

)

,

where dn�1
(ξ1, ξ2) = maxt∈[−n,n] |ξ1(t) − ξ2(t)|, n ∈ N. We recall that a sequence of
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functions {ξn}n∈N ⊂ �1 converges to a function ξ ∈ �1 (which will be denoted by

ξn
�1−−−→

n→∞ ξ ), if for any interval [a, b] ⊂ R, a < b, there holds the convergence

lim
n→∞ max

t∈[a,b] |ξn(t) − ξ(t)| = 0.

By condition (1.7), we have g ∈ W 1,2
b (R, L2(�)). Consider the family

{gh : h ∈ R} in �2,

where�2 represents the spaceW
1,2
loc (R, L2(�)) endowed with the local 2-power mean

convergence topology, that is, a sequence {gn}n∈N ⊂ �2 converges to a function

g ∈ �2 (which will be denoted by gn
�2−−−→

n→∞ g), if for any interval [a, b] ⊂ R, a < b,

we have

lim
n→∞

∫ b

a

(

‖gn(s) − g(s)‖2L2(�)
+ ‖∂t gn(s) − ∂t g(s)‖2L2(�)

)

ds = 0.

We note that {gh : h ∈ R} is not supposed to be necessarily precompact in �2. Let
us denote the hull of the symbol σ0, where σ0(t) = (η(t), g(x, t)), by

� = H(σ0) = �0
�
.

where � := �1 × �2 is endowed with the product topology induced by �1 and �2.

Remark 3.1 According to [14, Chapter V, Sections 2–3],� is a complete metric space.

Proposition 3.2 The following properties hold:

(i) � is bounded in Cb(R) × W 1,2
b (R, L2(�)), and for any σ ∈ �, we have

‖σ‖Cb(R)×W 1,2
b (R,L2(�))

� a2 + C‖g‖W 1,2
b (R,L2(�))

,

where C > 0, a2 > 0 comes from (1.2), ‖ · ‖W 1,2
b (R,L2(�))

is given by (1.8)

and Cb(R) is endowed with the uniform norm ‖η‖∞ = supt∈R |η(t)|. In par-
ticular, for σ = (σ1, σ2) ∈ �, we have a1 � σ1(t) � a2 for all t ∈ R, and
‖σ2‖W 1,2

b (R,L2(�))
� C‖g‖W 1,2

b (R,L2(�))
.

(ii) The translation group {θh : h ∈ R} is continuous on � for all h ∈ R.
(iii) The translation group {θh : h ∈ R} acting on � is invariant in �, that is,

θh� = �, for all h ∈ R.

Proof (i) Let σ = (σ1, σ2) ∈ �. Then there exists a sequence {tn}n∈N ⊂ R such that

max
t∈[a,b] |η(t + tn) − σ1(t)| n→∞−→ 0
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and

lim
n→∞

∫ b

a

(

‖g(s + tn) − σ2(s)‖2L2(�)
+ ‖∂t g(s + tn) − ∂tσ2(s)‖2L2(�)

)

ds = 0,

(3.2)

whenever [a, b] is a compact interval.
On one hand, it follows by condition (1.2) that σ1 ∈ Cb(R) with 0 < a1 � σ1(t) �

a2 for all t ∈ R.
On the other hand, since

‖σ2(s)‖2L2(�)
� 2

(

‖g(s + tn) − σ2(s)‖2L2(�)
+ ‖g(s + tn)‖2L2(�)

)

,

‖∂tσ2(s)‖2L2(�)
� 2

(

‖∂t g(s + tn) − ∂tσ2(s)‖2L2(�)
+ ‖∂t g(s + tn)‖2L2(�)

)

,

we derive for each t ∈ R that

1

2

∫ t+1

t
‖σ2(s)‖2L2(�)

ds

�
∫ t+1

t
‖g(s + tn) − σ2(s)‖2L2(�)

ds +
∫ t+tn+1

t+tn
‖g(s)‖2L2(�)

ds

�
∫ t+1

t
‖g(s + tn) − σ2(s)‖2L2(�)

ds + sup
r∈R

∫ r+1

r
‖g(s)‖2L2(�)

ds

=
∫ t+1

t
‖g(s + tn) − σ2(s)‖2L2(�)

ds + ‖g‖2
L2
b(R,L2(�))

,

and by (3.2) it follows that ‖σ2‖2L2
b(R,L2(�))

� 2‖g‖2
L2
b(R,L2(�))

. By an analogous

argument, it follows that ‖∂tσ2‖2L2
b(R,L2(�))

� 2‖∂t g‖2L2
b(R,L2(�))

, hence

‖σ2‖2W 1,2
b (R,L2(�))

� 2‖g‖2
W 1,2

b (R,L2(�))
.

Consequently,

‖σ‖Cb(R)×W 1,2
b (R,L2(�))

= ‖σ1‖Cb(R) + ‖σ2‖W 1,2
b (R,L2(�))

� a2 + c‖g‖W 1,2
b (R,L2(�))

.

(ii) Let h ∈ R be fixed, and let {(ηn, gn)}n∈N be a sequence in � such that ηn
�1−−−→

n→∞ η

and gn
�2−−−→

n→∞ g. By [14, Proposition 2.3, Chapter V], we conclude that θhηn
�1−−−→

n→∞
θhη.
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Moreover, note that for any interval [a, b] ⊂ R with a < b, we have

lim
n→∞

∫ b

a

(

‖θhgn(s) − θhg(s)‖2L2(�)
+ ‖θh∂t gn(s) − θh∂t g(s)‖2L2(�)

)

ds

= lim
n→∞

∫ b

a

(
‖gn(s+h)−g(s + h)‖2L2(�)

+‖∂t gn(s + h)−∂t g(s+h)‖2L2(�)

)
ds

= lim
n→∞

∫ b+h

a+h

(
‖gn(r) − g(r)‖2L2(�)

+ ‖∂t gn(r) − ∂t g(r)‖2L2(�)

)
dr

= 0,

where in last equality we used that h ∈ R is fixed and gn
�2−−−→

n→∞ g. It follows that

θhgn
�2−−−→

n→∞ θhg,

and we complete the proof.
(iii) Let h ∈ R be fixed. If σ ∈ � = H(σ0), then σ(·) = limn→∞ σ0(· + hn) in �,
where {hn}n∈N ⊂ R. By the continuity of θh : � → �, we have

θhσ(·) = lim
n→∞ θhσ0(· + hn) = lim

n→∞ σ0(· + hn + h),

and, hence, θh� ⊆ �.
Conversely, by the continuity of θ−h as stated in item (ii), we obtain

θ−hσ(·) = lim
n→∞ θ−hσ0(· + hn) = lim

n→∞ σ0(· + hn − h),

which implies that θ−hσ(·) ∈ �. Therefore,

σ = θhθ−hσ ∈ θh�,

showing that � ⊆ θh�. 
�
Remark 3.3 Assume that conditions (1.3), (1.4) and (1.7) hold. Let

Aσ(t)(u, v) = (v,�u + �vt + f (u) + η(t)�v + g(x, t)),

with σ(t) = (η(t), g(x, t)), σ ∈ �, with� = H(σ0) = �0
�
, and consider the system

⎧
⎪⎨

⎪⎩

∂t (u, ut ) = Aσ(t)(u, ut ), t > s, x ∈ �,

u = 0, t � s, x ∈ ∂�,

u(s, x) = u0(x), ut (s, x) = v0(x), x ∈ �.

(3.3)
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For u ∈ X
1
2 , let z = (I − �)u ∈ X− 1

2 and set w(t) = zt (t). Taking

Bσ(t)(z, w) = (w,−η(t)�w − �z + f e(z) + g(x, t)),

with σ(t) = (η(t), g(x, t)), σ ∈ �, it follows that system (3.3) becomes

⎧
⎪⎨

⎪⎩

∂t (z, zt ) = Bσ(t)(z, zt ), t > s, x ∈ �,

z = 0, t � s, x ∈ ∂�,

z(s, x) = z0(x), zt (s, x) = w0(x), x ∈ �,

(3.4)

where � = I − (I − �)−1 ∈ L(X− 1
2 ) and f e = f ◦ (I − �). By the proofs of

Theorem 2.6, Lemma 2.13 and Theorem 2.14, the system (3.4) generates a family of

processes {Sσ,−1/2(t, s)}σ∈� in X− 1
2 × X− 1

2 defined by

Sσ,−1/2(t, s)
[ z0

w0

]
=

[
zσ (t,s,z0)
zσt (t,s,w0)

]

for all t � s, where zσ (·) = zσ (·, s, z0) ∈ C
(
[s,+∞), X− 1

2

)
∩ C1

(
(s,+∞), X− 1

2

)

is a global solution of (3.4) satisfying

‖zσ ‖2
X− 1

2
+ ‖zσt ‖2

X− 1
2

� C
(
e(t−s) + 1

1 − e
‖g‖2

W 1,2
b (R;L2(�))

)
,

for all t � s. Moreover, the processes {Sσ,−1/2(t, s)}σ∈� satisfies (2.9), (2.10), and
(2.11).

On the other hand, by the proofs of Theorem 2.7, Lemma 2.15 and Theorem 2.16,
the system (3.3) generates a family of uniformly bounded processes {Sσ (t, s)}σ∈� in

X
1
2 × X

1
2 given by

Sσ (t, s)
[
u0
v0

]
=

[
uσ (t,s,u0)
uσ
t (t,s,v0)

]

for all t � s, where uσ (·) = uσ (·, s, u0) ∈ C
(
[s,+∞), X

1
2

)
∩ C1

(
(s,+∞), X

1
2

)
is

a global solution of (3.3) satisfying

‖uσ ‖2
X

1
2

+ ‖uσ
t ‖2

X
1
2

� C
(
e(t−s) + 1

1 − e
‖g‖2

W 1,2
b (R;L2(�))

)
,

for all t � s. Further,

Sσ (t, s) = 
1S−1/2,σ (t, s)
−1

and

Sσ (t, s)

[
u0
v0

]

= Lσ (t, s)

[
u0
v0

]

+Uσ (t, s)

[
u0
v0

]

,
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where

Lσ (t, s) = 
1Lσ,−1/2(t, s)
−1 and Uσ (t, s) = 
1Uσ,−1/2(t, s)
−1,

and more specifically

Uσ (t, s)

[
u0
v0

]

=
∫ t

s
Lσ (t, τ )
1Fσ

(

τ,
−1Sσ (τ, s)

[
u0
v0

])

dτ.

In what follows, we prove the existence of a uniformly bounded absorbing set for
the system {Sσ (t, s)}σ∈� .

3.2 Existence of a uniformly absorbing set

Lemma 3.4 Let {Sσ (t, s)}σ∈� be the family of processes associated with system (3.3).
Then there exists a bounded set B ⊂ X

1
2 × X

1
2 that uniformly (w.r.t. σ ∈ �) absorbs

all bounded subsets of X
1
2 × X

1
2 , that is, for every bounded subset D ⊂ X

1
2 × X

1
2

there exists an absorbing time TD � 0 such that

⋃

σ∈�

Sσ (t, 0)D ⊂ B, for all t � TD.

Proof Given σ ∈ �, σ(t) = (η(t), g(x, t)), and z0, w0 ∈ X− 1
2 , let

Sσ,−1/2(t, 0)
[ z0
w0

] = [zσ
zσt

]
for all t � 0. Let 0 < b < ν0

4(1+λ1)
and define for any

t � 0 the functionals

Wσ (t) = 1

2

(

‖zσ ‖2
X− 1

2
+ ‖zσt ‖2

X− 1
2

− ‖ Ã− 1
2 zσ ‖2

X− 1
2

)

−
∫

�

F( Ã−1zσ ) dx

and

V b
σ (t) = Wσ (t) + b〈zσ , zσt 〉

X− 1
2
,

where F(t) =
∫ t

0
f (τ ) dτ .

Claim 1: There are constants c̃, ˜̃c > 0 (which is independent of the choice of σ )
such that

ν0

2(1 + λ1)

(
‖zσ ‖2

X− 1
2

+ ‖zσt ‖2
X− 1

2

)
− c̃ � Wσ (t)

� ˜̃c
(
1 + ‖zσ ‖2

X− 1
2

+ ‖zσt ‖2
X− 1

2
+ ‖zσ ‖ρ+1

X− 1
2

)
,

for all t � 0 and σ ∈ �.
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Indeed, on one hand, by Lemma 2.10, (ii), one can obtain ν0 ∈ (0, λ1) and c̃ > 0
such that

−
∫

�

F
(
Ã−1zσ

)
dx � − (λ1 − ν0)

2(1 + λ1)
‖zσ ‖2

X− 1
2

− c̃,

and, consequently, by Lemma 2.8 we obtain

Wσ (t) � 1

2

(

‖zσ ‖2
X− 1

2
+ ‖zσt ‖2

X− 1
2

− ‖ Ã− 1
2 zσ ‖2

X− 1
2

)

− (λ1 − ν0)

2(1 + λ1)
‖zσ ‖2

X− 1
2

− c̃

� λ1

2(1 + λ)
‖zσ ‖2

X− 1
2

+ 1

2
‖zσt ‖2

X− 1
2

− λ1

2(1 + λ1)
‖zσ ‖2

X− 1
2

+ ν0

2(1 + λ1)
‖zσ ‖2

X− 1
2

− c̃

= ν0

2(1 + λ1)
‖zσ ‖2

X− 1
2

+ 1

2
‖zσt ‖2

X− 1
2

− c̃

� ν0

2(1 + λ1)

(
‖zσ ‖2

X− 1
2

+ ‖zσt ‖2
X− 1

2

)
− c̃, (3.5)

for all t � 0 and σ ∈ �.
On the other hand, the estimate (1.6) implies

∫

�

∣
∣F( Ã−1zσ )

∣
∣ dx � c1

(
1 + ‖ Ã−1zσ ‖ρ+1

Lρ+1(�)

)
� c2

(
1 + ‖ Ã−1zσ ‖ρ+1

X
1
2

)

= c2
(
1 + ‖zσ ‖ρ+1

X− 1
2

)

where the constants ci > 0 (i = 1, 2) are independent of σ , resulting in

Wσ (t) � ˜̃c
(
1 + ‖zσ ‖2

X− 1
2

+ ‖zσt ‖2
X− 1

2
+ ‖zσ ‖ρ+1

X− 1
2

)
, t � 0, σ ∈ �, (3.6)

for some constant ˜̃c > 0 (which is independent of the choice of σ ).
The Claim 1 follows by (3.5) and (3.6).
Now, note that inequality (3.5) ensures that

∣
∣V b

σ (t) − Wσ (t)
∣
∣ � b

(
‖zσ ‖2

X− 1
2

+ ‖zσt ‖2
X− 1

2

)
� 2(1 + λ1)b

ν0

(
Wσ (t) + c̃

)

which implies

c1,bWσ (t) − c0,b � V b
σ (t) � c2,bWσ (t) + c0,b, t � 0, σ ∈ �, (3.7)

with

c0,b = 2c̃(1 + λ1)b

ν0
> 0, c1,b = 1 − 2(1 + λ1)b

ν0
> 0, and
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c2,b = 1 + 2(1 + λ1)b

ν0
> 0.

Derivating V b
σ (t) with respect to t , we obtain

d

dt
V b

σ (t) = d

dt
Wσ (t) + d

dt

[

b〈zσ , zσt 〉
X− 1

2

]

.

Claim 2:
d

dt
Wσ (t) � −

(
a1λ1

(1 + λ1)
− δ

2

)

‖zσt ‖2
X− 1

2
+ c3

2δ
‖g(t)‖2X , for some

constant c3 > 0 and for any δ > 0 (they are independent of σ ).
In fact, from (2.4) we have

d

dt
Wσ (t) = −η(t)

(

‖zσt ‖2
X− 1

2
− ‖ Ã− 1

2 zσt ‖2
X− 1

2

)

+ 〈
g(t), zσt

〉

X− 1
2

� − a1λ1
(1 + λ1)

‖zσt ‖2
X− 1

2
+ δ

2
‖zσt ‖2

X− 1
2

+ c3
2δ

‖g(t)‖2X

for any δ > 0.

Claim 3:
d

dt

[

〈zσ , zσt 〉
X− 1

2

]

� −Wσ (t) +
(

− λ1

2(1 + λ1)
+ a2δ1

2
+ a2δ2

2(1 + λ1)
+

δ3

2

)
‖zσ ‖2

X− 1
2

+
(3

2
+ a2

2δ1
+ a2

2δ2(1 + λ1)

)
‖zσt ‖2

X− 1
2

+ c3
2δ3

‖g(t)‖2X , for any choice

of δ1, δ2, δ3 > 0.
Indeed, note that

d

dt

[

〈zσ , zσt 〉
X− 1

2

]

= ‖zσt ‖2
X− 1

2
+ 〈zσ , zσt t 〉X− 1

2

= ‖zσt ‖2
X− 1

2
− η(t)〈zσ , zσt 〉

X− 1
2

+ η(t)〈 Ã− 1
2 zσ , Ã− 1

2 zσt 〉
X− 1

2

−
(
‖zσ ‖2

X− 1
2

− ‖ Ã− 1
2 zσ ‖2

X− 1
2

)

+
∫

�

f
(
Ã−1zσ

)
Ã−1zσ dx + 〈

g(t), zσ
〉

X− 1
2

= −Wσ (t) + 3

2
‖zσt ‖2

X− 1
2

− 1

2
‖zσ ‖2

X− 1
2

+ 1

2
‖ Ã− 1

2 zσ ‖2
X− 1

2
− η(t)〈zσ , zσt 〉

X− 1
2

+ η(t)〈 Ã− 1
2 zσ , Ã− 1

2 zσt 〉
X− 1

2
+

∫

�

(
f ( Ã−1zσ ) Ã−1zσ − F( Ã−1zσ )

)
dx

+ 〈
g(t), zσ

〉

X− 1
2
.

An application of (1.5) yields

∫

�

(
f ( Ã−1zσ ) Ã−1zσ − F( Ã−1zσ )

)
dx � 0,
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and, consequently, by using Remark 2.9 and the Young’s and Poincaré’s inequalities,

d

dt

[

〈zσ , zσt 〉
X− 1

2

]

� −Wσ (t) + 3

2
‖zσt ‖2

X− 1
2

− 1

2
‖zσ ‖2

X− 1
2

+ 1

2
‖ Ã− 1

2 zσ ‖2
X− 1

2

+ a2
(δ1

2
‖zσ ‖2

X− 1
2

+ 1

2δ1
‖zσt ‖2

X− 1
2

)

+ a2
(δ2

2
‖ Ã− 1

2 zσ ‖2
X− 1

2
+ 1

2δ2
‖ Ã− 1

2 zσt ‖2
X− 1

2

)
+ δ

2
‖zσ ‖2

X− 1
2

+ c3
2δ

‖g(t)‖2X

� −Wσ (t) +
(

− 1

2
+ a2δ1

2
+ 1

2(1 + λ1)
+ a2δ2

2(1 + λ1)
+ δ3

2

)
‖zσ ‖2

X− 1
2

+
(3

2
+ a2

2δ1
+ a2

2δ2(1 + λ1)

)
‖zσt ‖2

X− 1
2

+ c3
2δ3

‖g(t)‖2X ,

for any choice of δ1, δ2, δ3 > 0.
Based on Claims 2 and 3, we conclude that

d

dt
V b

σ (t) � −bWσ (t) −
(

bλ1
2(1 + λ1)

− a2δ1b

2
− a2δ2b

2(1 + λ1)
− δ3b

2

)

‖zσ ‖2
X− 1

2

−
(

a1λ1
1 + λ1

− δ

2
− 3b

2
− a2b

2δ1
− a2b

2δ2(1 + λ1)

)

‖zσt ‖2
X− 1

2

+ c3(b + 1)

2δ3
‖g(t)‖2X .

Choosing δ1, δ2, δ3, b > 0 sufficiently small, one can find a constant β =
β(δ1, δ2, δ3, b) > 0 such that

d

dt
V b

σ (t) � −bWσ (t) − β
(
‖zσ ‖2

X− 1
2

+ ‖zσt ‖2
X− 1

2

)
+ c3(b + 1)

2δ3
‖g(t)‖2X

� −bWσ (t) + c3(b + 1)

2δ3
‖g(t)‖2X

(3.7)

� −cbV
b
σ (t) + c4‖g(t)‖2X + c̃b,

for all t � 0 and positive constants c4, cb, c̃b > 0 which are independent of σ . By
Gronwall’s inequality, Lemma 2.12 and Proposition 3.2, we obtain

V b
σ (t) � V b

σ (0)e−cbt +
∫ t

0
e−cb(t−r)

(
c4‖g(r)‖2X + c̃b

)
dr

� V b
σ (0)e−cbt + c4 sup

t�0

∫ t

0
e−cb(t−r)‖g(r)‖2X dr + c̃b sup

t�0

(

e−cbt
∫ t

0
ecbr dr

)

� V b
σ (0)e−cbt + c4

1 − e−cb
‖g‖2

L2
b(R,L2(�))

+ c̃b
cb

sup
t�0

(1 − e−cbt )
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� V b
σ (0)e−cbt + c4

1 − e−cb
‖g‖2

W 1,2
b (R,L2(�))

+ c̃b
cb

� V b
σ (0)e−cbt + Cb,

with Cb > 0. Consequently, using (3.7), we have

Wσ (t) � cWσ (0)e−cbt + c,

for some c > 0. Hence, due to (3.5), it results in

‖zσ (t)‖2
X− 1

2
+ ‖zσt (t)‖2

X− 1
2

� KWσ (0)e−cbt + K , for all t � 0, (3.8)

for some constant K > 0 which is independent of σ . In this way, let D ⊂ X− 1
2 × X− 1

2

be a bounded subset. If
[ z0
w0

] ∈ D and
[zσ (0)
zσt (0)

] = [ z0
w0

]
, then it follows by (3.6) that

Wσ (0) � ˜̃c
(
1 + ‖z0‖2

X− 1
2

+ ‖w0‖2
X− 1

2
+ ‖z0‖ρ+1

X− 1
2

)
� RD,

for some constant RD > 0 which is independent of the choice of
[ z0
w0

] ∈ D and σ ∈ �.
Thus, according to (3.8), one can find TD > 0 such that if t � TD then

sup
σ∈�

∥
∥
∥
∥

[
zσ (t)
zσt (t)

]∥
∥
∥
∥

2

X− 1
2 ×X− 1

2

� 2K ,

and the result follows by isometries. 
�

3.3 The uniform attractor

Lemma 3.5 [3, Lemma 4.3] There exists γ ∈ (0, 1) such that for any bounded subset

D ⊂ X
1
2 , there holds

∥
∥ f (u1) − f (u2)

∥
∥
L

2N
N+2 (�)

� c1‖u1 − u2‖H1−γ (�), for all u1, u2 ∈ D,

for some constant c1 = c1(γ, D) > 0.

Theorem 3.6 [8, Theorem II.5.16] (Aubin–Lions–Simon) Let B0 ⊂ B1 ⊂ B2 be
three Banach spaces. Assume that the embedding of B1 in B2 is continuous and the
embedding of B0 in B1 is compact. Let p, r ∈ [1,∞]. Given T > 0, consider the set

Ep,r =
{

v ∈ L p((0, T ), B0) : dv

dt
∈ Lr ((0, T ), B2)

}

.

(i) If p < ∞, then the embedding of Ep,r into L p((0, T ), B1) is compact.
(ii) If p = ∞ and r > 1, then the embedding of Ep,r into C0((0, T ), B1) is compact.

123



Existence, regularization and upper-semicontinuity… 5661

Lemma 3.7 Let {sn}n∈N ⊂ R be a sequence and g ∈ W 1,2
b (R, L2(�)). Assume that

{un(t) : t ∈ R}n∈N is bounded in H1
0 (�), and for any T1 > 0, {(un)t (t) : t ∈ R}n∈N

is bounded in L∞((0, T1), L2(�)). Then for any T > 0 and C > 0 there exist
subsequences {unk }k∈N and {snk }k∈N such that

lim
k→∞ lim

l→∞

∫ T

0

∫ T

s

∫

�

e−C(T−t)(g(x, t + snk ) − g(x, t + snl ))(unk − unl )t

dxdtds = 0.

Proof Since {un(t) : t ∈ R}n∈N is bounded in H1
0 (�) and the embedding H1

0 (�) ↪→
Lm(�) is compact for 2 � m < 2N

N−2 (by Rellich–Kondrachov compactness theorem),
we assume without loss of generality that

un(T ) → u0 in Lm(�), 2 � m <
2N

N − 2
.

Claim 1: The sequence {un}n∈N is convergent, up to a subsequence, in
L1((0, T ), L2(�)) and in Lm((0, T ), Lm(�)) with 2 � m < 2N

N−2 .
In fact, consider the sets

E1,∞ = {v ∈ L1((0, T ), H1
0 (�)) : vt ∈ L∞((0, T ), L2(�))},

Em,∞ = {v ∈ Lm((0, T ), H1
0 (�)) : vt ∈ L∞((0, T ), Lm(�))}.

Since {un(t) : t ∈ R}n∈N ⊂ E1,∞ ∩ Em,∞ and H1
0 (�) ↪→ Lm(�) is compact

with 2 � m < 2N
N−2 , then the conclusion of Claim 1 follows by Aubin-Lions-Simon

Theorem (Theorem 3.6, (i)).
Claim 2: If ζ � 2, then there exists M = M(T ) > 0 such that

(∫ T

0
‖g(x, s + si ) − g(x, s + s j )‖ζ

Lζ (�)
ds

) 1
ζ

� M‖g‖L2
b(R;L2(�))

and

(∫ T

0
‖gt (x, s + si ) − gt (x, s + s j )‖ζ

Lζ (�)
ds

) 1
ζ

� M‖gt‖L2
b(R;L2(�)),

for all i, j ∈ N.
In fact, define gsi (x, s) = g(x, s + si ) and gs j (x, s) = g(x, s + s j ), for t ∈ [0, T ],

x ∈ �, and i, j ∈ N. Denote by �T � the greatest integer less than or equal to T .
Since ζ � 2 then there exists a constant c > 0 such that ‖gsi − gs j ‖2Lζ ((0,T ),Lζ (�))

�
c‖gsi − gs j ‖2L2((0,T ),L2(�))

. Consequently,

‖gsi − gs j ‖2Lζ ((0,T ),Lζ (�))
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� 2c‖gsi ‖2L2((0,T ),L2(�))
+ 2c‖gs j ‖2L2((0,T ),L2(�))

� 2c‖gsi ‖2L2((0,T ),L2(�))
+ 2c‖gs j ‖2L2((0,T ),L2(�))

= 2c
∫ si+T

si
‖g(x, s)‖2L2(�)

ds + 2c
∫ s j+T

s j
‖g(x, s)‖2L2(�)

ds

� 2c
�T �∑

k=0

∫ si+k+1

si+k
‖g(x, s)‖2L2(�)

ds + 2c
�T �∑

k=0

∫ s j+k+1

s j+k
‖g(x, s)‖2L2(�)

ds

� 4c(1 + �T �)‖g‖2
L2
b(R,L2(�))

.

Analogously,

‖(gt )si − (gt )s j ‖2Lζ ((0,T ),Lζ (�))
� 4c(1 + �T �)‖gt‖2L2

b(R,L2(�))
,

where (gt )si (x, s) = gt (x, s + si ) and (gt )s j (x, s) = gt (x, s + s j ). Taking M =√
4c(1 + �T �), the claim is proved.
Claim 3: The following estimate holds

∣
∣
∣
∣

∫ T

0

∫ T

s

∫

�

e−C(T−τ)(g(x, τ + si ) − g(x, τ + s j ))(ui − u j )t (τ ) dxdτds

∣
∣
∣
∣

� MT ‖g‖W 1,2
b (R,L2(�))

‖ui (T ) − u j (T )‖Lm (�)

+ M(1 + CT )‖g‖W 1,2
b (R,L2(�))

‖ui − u j‖Lm ((0,T ),Lm (�))

+ MT ‖gt‖W 1,2
b (R,L2(�))

‖ui − u j‖Lm ((0,T ),Lm (�)),

for all i, j ∈ N, C > 0, and 2 � m < 2N
N−2 .

In fact, let w(t) = wi, j (t) = ui (t) − u j (t) and

G(x, t) = gi, j (x, t) = g(x, t + si ) − g(x, t + s j ),

i, j ∈ N, for t ∈ [0, T ] and x ∈ �. Since

G(x, t)e−C(T−t)wt (t) = d

dt
[G(x, t)e−C(T−t)w(t)] − Gt (x, t)e

−C(T−t)w(t)

− G(x, t)Ce−C(T−t)w(t),

we obtain

∣
∣
∣
∣

∫ T

0

∫ T

s

∫

�

e−C(T−τ)G(x, τ )wt (τ ) dxdτds

∣
∣
∣
∣ �

�
∫ T

0

∫

�

∣
∣G(x, T )w(T )

∣
∣ dxds +

∫ T

0

∫

�

∣
∣G(x, s)w(s)

∣
∣ dxds
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+
∫ T

0

∫ T

s

∫

�

∣
∣Gt (x, τ )w(τ)

∣
∣ dxdτds

+ C
∫ T

0

∫ T

s

∫

�

∣
∣G(x, τ )w(τ)

∣
∣ dxdτds

� T
∫

�

∣
∣G(x, T )w(T )

∣
∣ dx +

∫ T

0

∫

�

∣
∣G(x, s)w(s)

∣
∣ dxds

+ T
∫ T

0

∫

�

∣
∣Gt (x, s)w(s)

∣
∣ dxds + CT

∫ T

0

∫

�

∣
∣G(x, s)w(s)

∣
∣ dxds

� T

(∫

�

∣
∣G(x, T )

∣
∣m

∗
dx

) 1
m∗ (∫

�

∣
∣w(T )

∣
∣m dx

) 1
m

+ T

(∫ T

0

∥
∥Gt (x, s)

∥
∥m

∗
Lm∗

(�)
ds

) 1
m∗ (∫ T

0
‖w(s)‖mLm (�)ds

) 1
m

+ (1 + CT )

(∫ T

0

∥
∥G(x, s)

∥
∥m

∗
Lm∗

(�)
ds

) 1
m∗ (∫ T

0
‖w(s)‖mLm (�)ds

) 1
m

� M‖g‖W 1,2
b (R,L2(�))

(
T ‖w(T )‖Lm (�) + (1 + CT )‖w‖Lm ((0,T ),Lm (�))

)

+ MT ‖gt‖W 1,2
b (R,L2(�))

‖w‖Lm ((0,T ),Lm (�)),

and the assertion is proved.
By the Claim 1, there exists a subsequence {unk }k∈N such that

‖unk (T ) − unl (T )‖Lm (�)
k,l→∞−−−−→ 0,

‖unk − unl‖Lm ((0,T ),Lm (�))
k,l→∞−−−−→ 0, 2 � m <

2N

N − 2
.

Consequently,

lim
k→∞ lim

l→∞

∫ T

0

∫ T

s

∫

�

e−C(t−τ)(g(x, τ + snk ) − g(x, τ + snl ))(unk − unl )t

(τ )dxdτds = 0,

proving the result. 
�
Our next aim is to build a contractive function in order to apply the Lemma A.9.

Let 
−1 be the isometry given in Lemma 2.1, (zi0, w
i
0) ∈ B̃ = 
−1(B) ⊂ X− 1

2 ×
X− 1

2 , where B is the absorbing set obtained in Lemma 3.4, and consider (zi , zit ),
i = 1, 2, solutions to the initial value problem

⎧
⎪⎨

⎪⎩

zitt + ηi (t)�zit + �zi = f e(zi ) + gi (x, t), t > s, x ∈ �,

zi = 0, t � s, x ∈ ∂�,

zi (s) = zi0 and zit (s) = wi
0,

123



5664 V. T. Azevedo et al.

with σi (x, t) = (ηi (t), gi (t)) in �. Then z(t) = z1(t) − z2(t) is solution of system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ztt + η1(t)�z1t − η2(t)�z2t + �z = f e(z1) − f e(z2)

+g1(t) − g2(t), t > s, x ∈ �,

z = 0, t � s, x ∈ ∂�,

z(s) = z10 − z20 and zt (s) = w1
0 − w2

0,

(3.9)

or equivalently,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ztt + η1(t)�zt + (η1(t) − η2(t))�z2t + �z = f e(z1) − f e(z2)

+g1(t) − g2(t), t > s, x ∈ �,

z = 0, t � s, x ∈ ∂�,

z(s) = z10 − z20 and zt (s) = w1
0 − w2

0 .

Consider the functionals

E(t) = 1

2

(

‖z(t)‖2
X− 1

2
− ‖ Ã− 1

2 z(t)‖2
X− 1

2
+ ‖zt (t)‖2

X− 1
2

)

and

Eb(t) = E(t) + b〈z, zt 〉
X− 1

2
,

with b > 0.

Lemma 3.8 There are constants C1,C2 > 0 such that

C1E(t) � Eb(t) � C2E(t) for all t � 0,

for a sufficiently small b > 0.

Proof Note that

Eb(t) � E(t) + b

2
‖z‖2

X− 1
2

+ b

2
‖zt‖2

X− 1
2

Lemma 2.8
� E(t) + b(1 + λ1)

2λ1

(

‖z‖2
X− 1

2
− ‖ Ã− 1

2 z‖2
X− 1

2

)

+ b

2
‖zt‖2

X− 1
2

� λ1 + b(1 + λ1)

λ1
E(t),

with b > 0.
On the other hand, choosing 0 < b < λ1

1+λ1
, applying Remark 2.9 and

∣
∣2b〈z, zt 〉

X− 1
2

∣
∣ � b‖z‖2

X− 1
2

+ b‖zt‖2
X− 1

2
, we obtain

Eb(t) �
(
1

2
− b

2
− 1

2(1 + λ1)

)

‖z‖2
X− 1

2
+ (1 − b)

2
‖zt‖2

X− 1
2
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�
(
1

2
− b

2
− 1

2(1 + λ1)

)(
‖z‖2

X− 1
2

+ ‖zt‖2
X− 1

2

)

�
(
1

2
− b

2
− 1

2(1 + λ1)

)(
‖z‖2

X− 1
2

− ‖ Ã− 1
2 z‖2

X− 1
2

+ ‖zt‖2
X− 1

2

)
,

and denoting C1 = 1
2 − b

2 − 1
2(1+λ1)

> 0, the proof is complete. 
�

Lemma 3.9 There exist constants C, C̃ > 0 and some γ ∈ (0, 1) such that

d

dt
Eb(t) � − CEb(t) + C̃‖z∥∥2

X
−1−γ

2
+ b〈g1 − g2, z〉

X− 1
2

+ 〈g1 − g2, zt 〉
X− 1

2

+
〈
(η2(t) − η1(t))�z2t , zt

〉

X− 1
2

+ b
〈
(η2(t) − η1(t))�z2t , z

〉

X− 1
2

for sufficiently small b > 0.

Proof Taking the inner product of (3.9) with zt in X− 1
2 , we obtain

d

dt

(
1

2

(‖zt‖2
X− 1

2
+ ‖z‖2

X− 1
2

− ‖ Ã− 1
2 z‖2

X− 1
2

)
)

= − η1(t)
(
‖zt‖2

X− 1
2

− ‖ Ã− 1
2 zt‖2

X− 1
2

)
+

〈
(η2(t) − η1(t))�z2t , zt

〉

X− 1
2

+
〈
f e(z1) − f e(z2), zt

〉

X− 1
2

+ 〈
g1 − g2, zt

〉

X− 1
2

� − a1λ1
1 + λ1

‖zt‖2
X− 1

2
+

〈
f e(z1) − f e(z2), zt

〉

X− 1
2

+ 〈
g1 − g2, zt

〉

X− 1
2

+
〈
(η2(t) − η1(t))�z2t , zt

〉

X− 1
2
, (3.10)

where we used Lemma 2.8. Also, using Lemma 2.8 and Remark 2.9, we have the
following estimate

d

dt

(

b〈z, zt 〉− 1
2

)

= b‖zt‖2
X− 1

2
+ b〈z, ztt 〉

X− 1
2

� b‖zt‖2
X− 1

2
− bη1(t)〈z, zt 〉

X− 1
2

+ bη1(t)
〈
Ã− 1

2 z, Ã− 1
2 zt

〉

X− 1
2

− b
(‖z‖2

X− 1
2

− ‖ Ã− 1
2 z‖2

X− 1
2

)

+ b
〈
f e(z1) − f e(z2), z

〉

X− 1
2
+b

〈
g1 − g2, z

〉

X− 1
2
+b

〈
(η2(t) − η1(t))�z2t , z

〉

X− 1
2

� b‖zt‖2
X− 1

2
+ ba2δ1

2
‖z‖2

X− 1
2

+ ba2
2δ1

‖zt‖2
X− 1

2
+ ba2δ2

2
‖ Ã− 1

2 z‖2
X− 1

2

+ ba2
2δ2(1 + λ1)

‖zt‖2
X− 1

2
− bλ1

1 + λ1
‖z‖2

X− 1
2

+ b
〈
f e(z1) − f e(z2), z

〉

X− 1
2

+ b
〈
g1 − g2, z

〉

X− 1
2
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+ b
〈
(η2(t) − η1(t))�z2t , z

〉

X− 1
2
,

for any choice of δ1, δ2 > 0.

According to Lemma 2.11, Lemma 3.5 and the continuous embedding X
1
2 ↪→

L
2N
N−2 (�), N � 3, we obtain

〈
f e(z1) − f e(z2), z

〉

X− 1
2

=
∫

�

[
f e(z1) − f e(z2)

]
Ã−1z dx

�
∥
∥ f ( Ã−1z1) − f ( Ã−1z2)

∥
∥
L

2N
N+2 (�)

‖ Ã−1z‖
L

2N
N−2 (�)

� c0
∥
∥ Ã−1z1 − Ã−1z2

∥
∥
H1−γ (�)

‖ Ã−1z‖
X

1
2

� c0
∥
∥z

∥
∥
X

−1−γ
2

‖z‖
X− 1

2

� c0
δ3

2

∥
∥z

∥
∥2

X
−1−γ

2
+ c0

1

2δ3
‖z‖2

X− 1
2
,

and, analogously,

〈
f e(z1) − f e(z2), zt

〉

X− 1
2

=
∫

�

[
f e(z1) − f e(z2)

]
Ã−1zt dx

� c0
δ4

2

∥
∥z

∥
∥2

X
−1−γ

2
+ c0

1

2δ4
‖zt‖2

X− 1
2
,

for any choice of δ3, δ4 > 0, and some constant c0 > 0.
Then, from last inequalities we deduce

d

dt
Eb(t) � −

(
bλ1

1 + λ1
− ba2δ1

2
− bc0δ3

2
− ba2δ2

2(1 + λ1)

)

‖z‖2
X− 1

2

−
(

a1λ1
1 + λ1

− ba2
2δ2(1 + λ1)

− ba2
2δ1

− b − c0δ4
2

)

‖zt‖2
X− 1

2

+
(bc0
2δ3

+ c0
2δ4

)
‖z‖2

X
−1−γ

2
+ b〈g1 − g2, z〉

X− 1
2

+ 〈g1 − g2, zt 〉
X− 1

2

+
〈
(η2(t) − η1(t))�z2t , zt

〉

X− 1
2

+ b
〈
(η2(t) − η1(t))�z2t , z

〉

X− 1
2
,

fromwhere choosing sufficiently smallb, δ1, δ2, δ3, δ4 > 0 andnoting that the inequal-

ity E(t) � 1
2

(
‖z‖2

X− 1
2

+ ‖zt‖2
X− 1

2

)
holds, it follows that we can find constants

˜̃C, C̃ > 0, which depend only on b, δ1, δ2, δ3, δ4, satisfying

d

dt
Eb(t) � − ˜̃CE(t) + C̃‖z∥∥2

X
−1−γ

2
+ b〈g1 − g2, z〉

X− 1
2

+ 〈g1 − g2, zt 〉
X− 1

2

+
〈
(η2(t) − η1(t))�z2t , zt

〉

X− 1
2

+ b
〈
(η2(t) − η1(t))�z2t , z

〉

X− 1
2
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Lemma 3.8
� −

˜̃C
C2

Eb(t) + C̃‖z∥∥2
X

−1−γ
2

+ b〈g1 − g2, z〉
X− 1

2
+ 〈g1 − g2, zt 〉

X− 1
2

+
〈
(η2(t) − η1(t))�z2t , zt

〉

X− 1
2

+ b
〈
(η2(t) − η1(t))�z2t , z

〉

X− 1
2
,

proving the result. 
�
Lemma 3.10 Given any ε > 0, there exists a sufficiently large time T = T (ε, B̃) > 0
such that

|∥∥Sσ1,− 1
2
(T , 0)(z10, w

1
0) − Sσ2,− 1

2
(T , 0)(z20, w

2
0)

∥
∥
X− 1

2 ×X− 1
2

� ε + �T
(
(z10, w

1
0), (z

2
0, w

2
0); σ1, σ2

)
,

where �T = ∣
∣�T ,aux

∣
∣1/2, with

�T ,aux
(
(z10, w

1
0), (z

2
0, w

2
0), σ1, σ2

) = 1

T

(
�T ,1,aux + �T ,2,aux + �T ,3,aux

)
,

and

�T ,1,aux((z
1
0, w

1
0), (z

2
0, w

2
0), σ1, σ2) = C̃

C1

∫ T

0

∫ T

s
‖z(t)‖2

X
−1−γ

2
dt ds,

�T ,2,aux((z
1
0, w

1
0), (z

2
0, w

2
0), σ1, σ2)

= 1

C1

∫ T

0

∫ T

s
be−C(T−t)〈g1(t) − g2(t), z(t)〉

X− 1
2
dtds

+ 1

C1

∫ T

0

∫ T

s
e−C(T−t)〈g1(t) − g2(t), zt (t)〉

X− 1
2
dtds,

�T ,3,aux((z
1
0, w

1
0), (z

2
0, w

2
0), σ1, σ2)

= 1

C1

∫ T

0

∫ T

s
e−C(T−t)〈(η2(t) − η1(t))�z2t (t), zt (t)

〉

X− 1
2
dtds

+ 1

C1

∫ T

0

∫ T

s
be−C(T−t)〈(η2(t) − η1(t))�z2t (t), z(t)〉X− 1

2
dtds.

Here, z = z1 − z2 is the solution of Eq. (3.9), with initial data (z10, w
1
0), (z

2
0, w

2
0) ∈ B̃,

and parameters σ1, σ2 ∈ �. The constants C, C̃ > 0 are independent of T .

Proof By Lemma 3.9, there exist constants C, C̃ > 0 such that

d

dt
Eb(t) � −CEb(t) + C̃‖z∥∥2

X
−1−γ

2

+ 〈(η2(t) − η1(t))�z2t , zt 〉X− 1
2

+ b〈(η2(t) − η1(t))�z2t , z〉X− 1
2
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+ b〈g1 − g2, z〉
X− 1

2
+ 〈g1 − g2, zt 〉

X− 1
2
.

Consequently,

d

dt

(

Eb(t)e
Ct

)

� eCt C̃‖z∥∥2
X

−1−γ
2

+ eCt 〈(η2(t) − η1(t))�z2t , zt 〉X− 1
2

+ beCt 〈(η2(t) − η1(t))�z2t , z〉X− 1
2

+ beCt 〈g1 − g2, z〉
X− 1

2
+ eCt 〈g1 − g2, zt 〉

X− 1
2
,

and integrating the previous inequality over [s, T ] (w.r.t. t), we obtain

Eb(T ) � Eb(s)e
−C(T−s)

+ C̃
∫ T

s
e−C(T−t)‖z∥∥2

X
−1−γ

2
dt +

∫ T

s
be−C(T−t)〈g1 − g2, z〉

X− 1
2
dt

+
∫ T

s
e−C(T−t)〈g1 − g2, zt 〉

X− 1
2
dt

+
∫ T

s
e−C(T−t)〈(η2(t) − η1(t))�z2t , zt 〉X− 1

2
dt

+
∫ T

s
be−C(T−t)〈(η2(t) − η1(t))�z2t , z〉X− 1

2
dt .

Using Lemma 3.8 and the fact that |E(s)| � M̃ for some M̃ > 0 (inspired by
(3.8)), we conclude that

E(T ) � C2

C1
M̃e−C(T−s)

+ C̃

C1

∫ T

s
e−C(T−t)‖z∥∥2

X
−1−γ

2
dt + 1

C1

∫ T

s
be−C(T−t)〈g1 − g2, z〉

X− 1
2
dt

+ 1

C1

∫ T

s
e−C(T−t)〈g1 − g2, zt 〉

X− 1
2
dt

+ 1

C1

∫ T

s
e−C(T−t)〈(η2(t) − η1(t))�z2t , zt 〉X− 1

2
dt

+ 1

C1

∫ T

s
be−C(T−t)〈(η2(t) − η1(t))�z2t , z〉X− 1

2
dt .

Integrating the above inequality over [0, T ] with respect to s, 0 � s � t � T , we
have

E(T )T � C2M̃

C1
e−CT

(
eCT − 1

C

)

+ C̃

C1

∫ T

0

∫ T

s
‖z∥∥2

X
−1−γ

2
dtds
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+ 1

C1

∫ T

0

∫ T

s
be−C(T−t)〈g1 − g2, z〉

X− 1
2
dtds

+ 1

C1

∫ T

0

∫ T

s
e−C(T−t)〈g1 − g2, zt 〉

X− 1
2
dtds

+ 1

C1

∫ T

0

∫ T

s
e−C(T−t)〈(η2(t) − η1(t))�z2t , zt 〉X− 1

2
dtds

+ 1

C1

∫ T

0

∫ T

s
be−C(T−t)〈(η2(t) − η1(t))�z2t , z〉X− 1

2
dtds.

Let ε > 0 and M̂ > C2 M̃
CC1

. Choose T > 0 such that M̂
T < ε2. Then

E(T ) � ε2 + �T ,aux ((z
1
0, w

1
0), (z

2
0, w

2
0); σ1, σ2),

where �T ,aux((z10, w
1
0), (z

2
0, w

2
0), σ1, σ2) = 1

T (�T ,1,aux + �T ,2,aux + �T ,3,aux), with

�T ,1,aux((z
1
0, w

1
0), (z

2
0, w

2
0), σ1, σ2) = C̃

C1

∫ T

0

∫ T

s
‖z∥∥2

X
−1−γ

2
dtds,

�T ,2,aux((z
1
0, w

1
0), (z

2
0, w

2
0), σ1, σ2) = 1

C1

∫ T

0

∫ T

s
be−C(T−t)〈g1 − g2, z〉

X− 1
2
dtds

+ 1

C1

∫ T

0

∫ T

s
e−C(T−t)〈g1 − g2, zt 〉

X− 1
2
dtds,

�T ,3,aux((z
1
0, w

1
0), (z

2
0, w

2
0), σ1, σ2)

= 1

C1

∫ T

0

∫ T

s
e−C(T−t)〈(η2(t) − η1(t))�z2t , zt 〉X− 1

2
dtds

+ 1

C1

∫ T

0

∫ T

s
be−C(T−t)〈(η2(t) − η1(t))�z2t , z〉X− 1

2
dtds.

Using Lemma 2.8, we conclude that

‖Sσ1,− 1
2
(T , 0)(z10, w

1
0) − Sσ2,− 1

2
(T , 0)(z20, w

2
0)‖

X
− 1
2 ×X− 1

2

� ε + �T ((z10, w
1
0), (z

2
0, w

2
0); σ1, σ2),

for all (z10, w
1
0), (z

2
0, w

2
0) ∈ B̃ and σ1, σ2 ∈ � with �T = |�T ,aux| 12 . 
�

Lemma 3.11 The map �T ,aux, defined in Lemma 3.10, is a contractive function on
B̃× B̃× � × �. Consequently, �T is also a contractive function on B̃× B̃× � × �.
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Proof Let {σn}n∈N ⊂ � and {(zn0, wn
0 )}n∈N be a sequence of initial data in B̃ ⊂

X− 1
2 × X− 1

2 . Now, for each n ∈ N, let (zn(t), znt (t)) be the corresponding solution of
the system

⎧
⎪⎨

⎪⎩

zntt + ηn(t)�znt + �zn = f e(zn) + gn(x, t), t > s, x ∈ �,

zn = 0, t � s, x ∈ ∂�,

zn(s) = zn0 and znt (s) = wn
0 .

Since B̃ is bounded, it follows by Lemma 3.4 (see (3.8)) that (zn(t), znt (t)) is

uniformly bounded in X− 1
2 × X− 1

2 .
Claim 1: There exists a subsequence such that

lim
k→∞ lim

l→∞ �T ,1,aux((z
nk
0 , w

nk
0 ), (znl0 , w

nl
0 ), σnk , σnl ) = 0.

In fact, since

{zn}n∈N ⊂ {w ∈ L2((0, T ), X− 1
2 ) : wt ∈ L∞((0, T ), X

−1−γ
2 )}

and the embedding X− 1
2 ↪→ X

−1−γ
2 is compact, it follows from Theorem 3.6, item (i),

that the sequence {zn}n∈N is convergent, up to a subsequence, in L2((0, T ), X
−1−γ

2 ).
Consequently,

|�T ,1,aux((z
nk
0 , w

nk
0 ), (znl0 , w

nl
0 ), σnk , σnl )|

� C̃

C1

∫ T

0

∫ T

s
‖znk (t) − znl (t)‖2

X
−1−γ

2
dtds

= C̃T

C1
‖znk (t) − znl (t)‖2

L2((0,T ),X
−1−γ

2 )

l,k→∞−→ 0.

Claim 2: There exists a subsequence such that

lim
k→∞ lim

l→∞ �T ,2,aux((z
nk
0 , w

nk
0 ), (znl0 , w

nl
0 ), σnk , σnl ) = 0.

Indeed, at first, note that by Lemma 3.4 (see (3.8)), there exists M = M(T ) > 0
such that

T
3
2 (�T � + 1)

1
2 sup
s∈[0,T ]

‖unkt (s) − unlt (s)‖L2(�) � M

and

T
3
2 (�T � + 1)

1
2 sup
s∈[0,T ]

‖unk (s) − unl (s)‖L2(�) � M.
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On the other hand, for each n ∈ N, there exists a sequence {rnp}p∈N ⊂ R such that

‖g(x, t + rnp) − gn(x, t)‖L2
b(R,L2(�))

p→∞−→ 0.

Thus, there exists pn > n such that ‖g(x, t + rnpn ) − gn(x, t)‖L2
b(R,L2(�)) <

1

n
, for

all n ∈ N. Besides that, for every k ∈ N, we have

∫ T

0

∫ T

s

∫

�

|(g(x, t + rnkpnk
) − gnk (x, t))|| Ã−1(znk − znl )t |dxdtds �

� T
∫ T

0

∫

�

|(g(x, t + rnkpnk
) − gnk (x, t))|| Ã−1(znk − znl )t |dxdt

� T

(∫ T

0
‖g(x, t + rnkpnk

) − gnk (x, t)‖2L2(�)
dt

) 1
2

(∫ T

0
‖ Ã−1(znk − znl )t‖2L2(�)

dt

) 1
2

� T

⎛

⎝
�T �∑

s=0

∫ s+1

s
‖g(x, t + rnkpnk

) − gnk (x, t)‖2L2(�)
dt

⎞

⎠

1
2

(∫ T

0
‖unkt − unlt ‖2L2(�)

dt

) 1
2

� T
3
2 (�T � + 1)

1
2 ‖g(x, t + rnkpnk

) − gnk (x, t)‖L2
b(R,L2(�))

sup
s∈[0,T ]

‖unkt (s) − unlt (s)‖L2(�) � M
nk

,

and, similarly,

∫ T

0

∫ T

s

∫

�

|(g(x, t + rnkpnk
) − gnk (x, t))|| Ã−1(znk − znl )|dxdtds �

� T
3
2 (�T � + 1)

1
2 ‖g(x, t + rnkpnk

) − gnk (x, t)‖L2
b(R,L2(�))

sup
s∈[0,T ]

‖unk (s) − unl (s)‖L2(�)

� M
nk

.

Consequently, using Lemma 3.7, we conclude that

∣
∣
∣
∣

∫ T

0

∫ T

s

∫

�

e−C(T−t)(gnk (x, t) − gnl (x, t)) Ã
−1(znk − znl )t dxdtds

∣
∣
∣
∣ �

123



5672 V. T. Azevedo et al.

�
∫ T

0

∫ T

s

∫

�

|g(x, t + rnkpnk
) − gnk (x, t)|| Ã−1(znk − znl )t |dxdtds

+
∣
∣
∣
∣

∫ T

0

∫ T

s

∫

�

e−C(T−t)(g(x, t + rnkpnk
) − g(x, t + rnlpnl

))(unk − unl )t dxdtds

∣
∣
∣
∣

+
∫ T

0

∫ T

s

∫

�

|g(x, t + rnlpnl
) − gnl (x, t)|| Ã−1(znk − znl )t |dxdtds

� M
nk

+ M
nl

+
∣
∣
∣
∣

∫ T

0

∫ T

s

∫

�

e−C(T−t)(g(x, t + rnkpnk
)

−g(x, t + rnlpnl
))(unk − unl )t dxdt

∣
∣
∣
l,k→∞−→ 0,

and (similarly to Lemma 3.7 with ut replaced by u)

∣
∣
∣
∣

∫ T

0

∫ T

s

∫

�

e−C(T−t)(gnk (x, t) − gnl (x, t)) Ã
−1(znk − znl )dxdtds

∣
∣
∣
∣ �

� M
nk

+ M
nl

+
∣
∣
∣
∣

∫ T

0

∫ T

s

∫

�

e−C(T−t)(g(x, t + rnkpnk
)

−g(x, t + rnlpnl
))(unk − unl )dxdt

∣
∣
∣
l,k→∞−→ 0.

In conclusion,

�T ,2,aux((z
nk
0 ,w

nk
0 ), (znl0 , w

nl
0 ), σnk , σnl )

l,k→∞−→ 0.

Claim 3: There exists a subsequence such that

lim
k→∞ lim

l→∞ �T ,3,aux((z
nk
0 , w

nk
0 ), (znl0 , w

nl
0 ), σnk , σnl ) = 0.

In fact, since {ηh : h ∈ R} is precompact in �1 = (C(R), d�1), it follows that
{ηn}n∈N, up to a subsequence, is a Cauchy sequence in �1. By Lemma 3.4 (see (3.8)),

the sequences {zn}n∈N and {znt }n∈N are bounded in X− 1
2 and, consequently,

�T ,3,aux((z
nk
0 , w

nk
0 ), (znl0 , w

nl
0 ), σnk , σnl )

� 1

C1

∫ T

0

∫ T

s
|ηnk (t) − ηnl (t)|‖�znkt ‖

X− 1
2
‖znkt − znlt ‖

X− 1
2
dtds

+ b

C1

∫ T

0

∫ T

s
|ηnk (t) − ηnl (t)|‖�znkt ‖

X− 1
2
‖znk − znl‖

X− 1
2
dtds

� C
∫ T

0

∫ T

0
|ηnk (t) − ηnl (t)| dtds

� CT 2 sup
t∈[0,T ]

|ηnk (t) − ηnl (t)| l,k→∞−→ 0.
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Therefore, �T ,aux is a contractive function on B̃ × B̃ × � × �. As a direct
consequence of the definition of a contractive function, it follows that

�T = ∣
∣�T ,aux

∣
∣1/2

is also a contractive function on B̃ × B̃ × � × �. 
�
As a consequence of Lemma A.9, Lemma 2.1 and Theorem A.11, we conclude the

following result.

Theorem 3.12 The family of processes {Sσ (t, s)}σ∈� associated with system (3.3)
admits a uniform attractor A� (in X

1
2 × X

1
2 ) given by

A� = ω0,�(B) = ωτ,�(B) =
⋃

D⊂B(X
1
2 ×X

1
2 )

ωτ,�(D), for all τ ∈ R,

where B is the absorbing set established in the Lemma 3.4.

4 Upper semicontinuity of the uniform attractor

Let ε ∈ [0, 1]. This section concerns the upper-semicontinuity of the uniform attractor
Aε

� of the family of evolution processes {Sε
σ (t, s)}σ∈� associated with system

⎧
⎪⎨

⎪⎩

utt − �u − ηε(t)�ut − �utt = f (u) + g(x, t), t > s, x ∈ �,

u = 0, t � s, x ∈ ∂�,

u(s, x) = u0(x), ut (s, x) = v0(x), x ∈ �,

(4.1)

where ηε : R −→ (0,∞) is uniformly continuous satisfying

0 < η1 � ηε(t) � η2 < ∞,

uniformly with respect to ε ∈ [0, 1]. Moreover, we assume that limε→0+ ‖ηε −
η0‖L∞(�) = 0.

Remark 4.1 The uniform attractor Aε
� with respect to the problem (4.1) is obtained

by considering the hull �ε = H(σ ε
0 ) = �0

�
with symbol σ ε

0 (t) = (ηε(t), g(x, t))

and � := �1 × �2, where �1 = (C(R), d�1) and �2 = W 1,2
loc (R, L2(�)) is endowed

with the local 2-power mean convergence topology.

Remark 4.2 By the proof of Lemma 3.4, we may conclude that there exists a bounded

set B ⊂ X
1
2 × X

1
2 such that for every bounded subset D ⊂ X

1
2 × X

1
2 one can obtain

an absorbing time TD � 0 such that

⋃

ε∈[0,1]

⋃

σ∈�

Sε
σ (t, 0)D ⊂ B, for all t � TD.
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Lemma 4.3 We have

dist
X

1
2 ×X

1
2

(
Sε
σ (t, s)w0, S

0
σ (t, s)w0

)
→ 0 as ε → 0+

in compacts subsets of R uniformly for w0 = [u0
v0

]
in bounded subsets of X

1
2 × X

1
2 .

Proof The proof follows that of Lemma 4.13 in [3]. 
�
Theorem 4.4 The family of uniform attractors {Aε

�}ε∈[0,1] is upper-semicontinuous
at ε0 = 0, that is,

lim
ε→0

[
dist

X
1
2 ×X

1
2

(Aε
�,A0

�

)] = 0.

Proof Suppose to the contrary that there exist δ > 0 and a sequence {εn}n∈N ⊂ [0, 1]
with limn→∞ εn = 0 such that

dist
X

1
2 ×X

1
2
(Aεn

� ,A0
�) > δ, n ∈ N.

Thus, one can obtain {vn}n∈N ⊂ Aεn
� such that

dist
X

1
2 ×X

1
2
(vn,A0

�) > δ, n ∈ N. (4.2)

According to Remark 4.2, we can choose t0 > 0 satisfying

⋃

ε∈[0,1]

⋃

σ∈�

Sε
σ (t, 0)B ⊂ B, for all t � t0.

Since A0
� is the uniform attractor of {S0σ (t, 0)}σ∈� and B is bounded, there exists

T0 � t0 such that

sup
σ∈�

dist
X

1
2 ×X

1
2
(S0σ (t, 0)B,A0

�) <
δ

3
, for all t � T0. (4.3)

Moreover, using Theorem A.11, for each k ∈ N, we have vk ∈ Aε
� = ωε

0,�(B).

Thus, there exist {xkn }n∈N ⊂ B, {σ k
n }n∈N ⊂ �ε and {tkn }n∈N ⊂ [0,∞), with

limn→∞ tkn = ∞, such that limn→∞ Sε
σ k
n
(tkn , 0)xkn = vk . Consequently, there exists an

integer nk > k such that for tk = tknk , σk = σ k
nk , and xk = xknk , we have

‖Sε
σk

(tk, 0)xk − vk‖
X

1
2 ×X

1
2

<
δ

3
, k ∈ N. (4.4)

Fix k0 ∈ N such that tk0 > T0. By Lemma 4.3, there exist ε0 > 0 such that

sup
x∈B

‖Sε
σk0

(t0, 0)x − S0σk0
(t0, 0)x‖

X
1
2 ×X

1
2

<
δ

3
, for all ε < ε0. (4.5)
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Hence, using (4.3), (4.4), and (4.5), we conclude that

dist
X

1
2 ×X

1
2
(vk0 ,A0

�) � dist
X

1
2 ×X

1
2
(vk0 , S

ε
σk0

(tk0 , 0)xk0)

+ dist
X

1
2 ×X

1
2
(Sε

σk0
(tk0 , 0)xk0 , S

0
σk0

(tk0 , 0)xn0) + dist
X

1
2 ×X

1
2
(S0σk0

(tk0 , 0)xk0 ,A0
�)

<
δ

3
+ δ

3
+ δ

3
= δ,

which contradicts (4.2). Therefore, the family of uniform attractors {Aε
�}ε∈[0,1] is

upper semicontinuous at ε0 = 0. 
�

5 Regularity of the uniform attractor

In this section, we provide a result regarding the regularity of that uniform attractor.
More precisely, in Theorem5.5,we shall prove thatA� is a bounded subset of X1×X1.
Before that, we present some preliminary results.

Lemma 5.1 Given r ∈ [0, 1], there are constants K , α > 0 such that

sup
σ∈�

∥
∥Lσ (t, 0)

∥
∥
L(X

1+r
2 ×X

1+r
2 )

� Ke−αt , for all t � 0.

Proof It is a consequence of Lemma 4.1 and Lemma 4.7 in [3]. 
�
Remark 5.2 Suppose that for some given r ∈ [0, 1] and some given bounded set

D ⊂ X
1+r
2 × X

1+r
2 the operators {Lσ (t, 0)}σ∈� and {Uσ (t, 0)}σ∈� are well-defined

and satisfy (for some constant C > 0)

sup
σ∈�

∥
∥Lσ (t, 0)

∥
∥
L(X

1+r
2 ×X

1+r
2 )

� C, for all t � 0,

and

sup
σ∈�

sup
[
u0
v0

]
∈D

∥
∥
∥
∥Uσ (t, 0)

[ u0
v0

]∥∥
∥
∥
X

1+r
2 ×X

1+r
2

� C, for all t � 0.

Then it is immediate that

γ�(D, 0) :=
⋃

σ∈�

γσ (D, 0) =
⋃

σ∈�

⋃

t�0

Sσ (t, 0)D,

is bounded in X
1+r
2 × X

1+r
2 .

Lemma 5.3 [12, Lemma 3.1] Let f̃ e := f e ◦ Ã. If f satisfies condition (1.4) then
there exists a constant c > 0 such that

∥
∥ f̃ e(φ)

∥
∥
X

σ̃−1
2

� c
(
1 + ‖φ‖ρ

X
1
2

)
, φ ∈ X

1
2 ,
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where σ̃ := min
{
1, N+2

2 − ρ N−2
2

}
, provided N � 3.

Lemma 5.4 Suppose that f satisfies conditions (1.3) and (1.4), and let us consider
σ̃ = min

{
1, N+2

2 − ρ N−2
2

}
. Then

sup
[
u0
v0

]
∈B

∥
∥
∥
∥Uσ (t, 0)

[ u0
v0

]∥∥
∥
∥
X

1+σ̃
2 ×X

1+σ̃
2

� C, for all t � 0 and σ ∈ �,

for some constant C = C(B) > 0, where B is the absorbing set given in Lemma 3.4.

Proof The proof is analogous to the proof of [3, Lemma 5.2]. 
�

Theorem 5.5 The uniform attractor A� (in X
1
2 × X

1
2 ) of system (3.3) is bounded in

X1 × X1.

Proof Let us denote D = A� . If x ∈ D = A� = ω0,�(B) is arbitrary,
then there are sequences {tn}n∈N ⊂ R+, {σn}n∈N ⊂ �, {xn}n∈N ⊂ B such that
limn→∞ Sσn (tn, 0)xn = x with limn→∞ tn = ∞. Using the fact that Sσn (tn, 0)xn =
Lσn (tn, 0)xn +Uσn (tn, 0)xn , it follows by Lemma 5.1 that

lim
n→∞

∥
∥Uσn (tn, 0)xn − x

∥
∥
X

1
2 ×X

1
2

= 0. (5.1)

According to Lemma 5.4,

∥
∥Uσn (tn, 0)xn

∥
∥
X

1+σ̃
2 ×X

1+σ̃
2

� C,

for all n ∈ N, with constant C = C(B) > 0 independent of x . As X
1+σ̃
2 × X

1+σ̃
2 is

reflexive we may assume without loss of generality that

Uσn (tn, 0)xn
w−→ y in X

1+σ̃
2 × X

1+σ̃
2 ,

for some y ∈ X
1+σ̃
2 × X

1+σ̃
2 . Since the embedding X

1+σ̃
2 × X

1+σ̃
2 ↪→ X

1
2 × X

1
2 is

continuous in the strong topology, if follows that (see [9, Theorem 3.10])

Uσn (tn, 0)xn
w−→ y in X

1
2 × X

1
2 ,

and from (5.1), Uσn (tn, 0)xn
w−→ x in X

1
2 × X

1
2 , that is, y = x . Consequently,

‖x‖
X

1+σ̃
2 ×X

1+σ̃
2

� lim inf
n→∞

∥
∥Uσn (tn, 0)xn

∥
∥
X

1+σ̃
2 ×X

1+σ̃
2

� C,

and, therefore, A� is bounded in X
1+σ̃
2 × X

1+σ̃
2 .
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Note that if σ̃ = 1 then the result is proved. Now let us suppose that σ̃ < 1
and set r0 := σ̃ and r1 := min

{
1,

( N+2
N−2

)
r0

}
. By condition (1.4) and the continuous

embeddings

X
1+r0
2 ↪→ L

2Nρ
N+2(1−r1) (�) ↪→ L

2N
N+2(1−r1) (�) ↪→ X

r1−1
2 ,

we obtain for all φ ∈ X
1+r0
2 that (denote r ′ := 2N

N+2(1−r1)
)

‖ f̃ e(φ)‖
X

r1−1
2

� c‖ f (φ)‖Lr ′ (�)
� c

∥
∥1 + |φ|ρ∥

∥
Lr ′ (�)

� c

(

1 + ‖φ‖ρ

Lr ′ρ(�)

)

� c

(

1 + ‖φ‖ρ

X
1+r0
2

)

,
(5.2)

for some constant c > 0.
Let x ∈ D = A� . As done in the first case, we have x = limn→∞ Sσn (tn, 0)xn

for some {xn}n∈N ⊂ B, {σn}n∈N ⊂ � and {tn}n∈N ⊂ R+ with limn→∞ tn = ∞. We
know that

lim
n→∞

∥
∥Uσn (tn, 0)xn − x

∥
∥
X

1
2 ×X

1
2

= 0.

Now, by Lemma 2.12, Proposition 3.2 and relation (5.2), we obtain

∥
∥
∥Uσn (tn, 0)xn

∥
∥
∥
X

1+r1
2 ×X

1+r1
2

=
∥
∥
∥
∥
−1− r1

2
◦ 
1

∫ tn

0
L−1/2,σn (tn, τ )Fσn

(
τ,
−1Sσn (τ, 0)xn

)
dτ

∥
∥
∥
∥
X− 1

2 ×X− 1
2

�
∫ tn

0
Ke−α(tn−τ)

(
∥
∥ f̃ e

(
uσn (τ, 0, xn)

)∥
∥
X

r1−1
2

+ ‖gn(τ )‖
X

r1−1
2

)

dτ

�
∫ tn

0
ce−α(tn−τ)

(

1 + ‖uσn (τ, 0, xn)‖ρ

X
1+r0
2

)

dτ + c
∫ tn

0
e−α(tn−τ)‖gn(τ )‖L2(�)dτ

�
∫ tn

0
ce−α(tn−τ)

(

1 + ‖uσn (τ, 0, xn)‖ρ

X
1+r0
2

)

dτ + c

(1 − e−α)
‖g‖2

W 1,2
b (R,L2(�))

,

and since by Remark 5.2 we conclude that the set γ�(D, 0) = ⋃
σ∈� γ�(D, 0) is

bounded in X
1+r0
2 × X

1+r0
2 , then

∥
∥uσn (τ, 0, xn)

∥
∥ρ

X
1+r0
2

� sup
ũ∈γσn (D,0)

‖ũ‖ρ

X
1+r0
2 ×X

1+r0
2

� sup
ũ∈γ�(D,0)

‖ũ‖ρ

X
1+r0
2 ×X

1+r0
2

� C1,

and this yields

∥
∥
∥Uσn (tn, 0)xn

∥
∥
∥
X

1+r1
2 ×X

1+r1
2

� C2, for all n ∈ N,
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for some constant C2 = C2(B) > 0 (independent of n). Since X
1+r1
2 × X

1+r1
2 is

reflexive, we may assume without loss of generality that

Uσn (tn, 0)xn
w−→ y in X

1+r1
2 × X

1+r1
2 ,

for some y ∈ X
1+r1
2 × X

1+r1
2 . Since the embedding X

1+r1
2 × X

1+r1
2 ↪→ X

1
2 × X

1
2 is

continuous, we have

Uσn (tn, 0)xn
w−→ y in X

1
2 × X

1
2 ,

and then x = y. Finally,

‖x‖
X

1+r1
2 ×X

1+r1
2

� lim inf
n→∞

∥
∥Uσn (tn, 0)xn

∥
∥
X

1+r1
2 ×X

1+r1
2

� C2,

proving that A� is bounded in X
1+r1
2 × X

1+r1
2 .

If r1 =
(
N+2
N−2

)
r0 < 1, then we continue with the previous process and we conclude

that

A� is bounded in X
1+r2
2 × X

1+r2
2 ,

where r2 := min
{
1, ( N+2

N−2 )
2r0

}
. Following the same steps and after a finite number of

them we reach rk := min
{
1,

( N+2
N−2

)k
r0

} = 1 for some k ∈ N (that is, ( N+2
N−2 )

kr0 � 1),
which concludes this proof. 
�

6 Characterization of the uniform attractor

Let us now assume that � is compact in � in order to apply the Theorem A.14 and
obtain a characterization of the uniform attractor, as described in the cited result. For
that we may suppose for instance that {gh : h ∈ R} is precompact in �2 (in other
words, g is translation compact in �2). Then, by [14, Chapter V, Section 5], � is
compact in �. Let us present some auxiliary results.

Lemma 6.1 The family of processes {Sσ (t, s)}σ∈� is
(
� × X

1
2 × X

1
2 , X

1
2 ×

X
1
2
)−continuous.

Proof Let ui be a solution of system (3.3) with symbols σi = (ηi , gi ) ∈ �, and initial
condition (ui0, v

i
0), i = 1, 2. Making a variable change zi := (I − �)ui , where zi is a

solution of (3.4) with symbol σi and initial condition (zi0, w
i
0), i = 1, 2. The difference
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z = z1 − z2 satisfies the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ztt + η1(t)�z + (η1(t) − η2(t))�z2t + �z = f e(z1) − f e(z2)

+g1(t) − g2(t), t > s, x ∈ �,

z = 0, t � s, x ∈ ∂�,

z(s) = z10 − z20 and zt (s) = w1
0 − w2

0 .

(6.1)

Taking the inner product of (6.1) with zt in X− 1
2 , we obtain from (3.10) the estimate

d

dt

[
1

2

(

‖zt‖2
X− 1

2
+ ‖z‖2

X− 1
2

− ‖ Ã− 1
2 z‖2

X− 1
2

)]

�
〈
f e(z1) − f e(z2), zt

〉

X− 1
2

+ (
η2(t) − η1(t)

)〈
�z2t , zt

〉

X− 1
2

+ 〈g1(t) − g2(t), zt 〉
X− 1

2
. (6.2)

Using Lemma 3.5, the Young inequality, and the continuous embeddings X
1
2 ↪→

L
2N
N−2 (�) and X− 1

2 ↪→ X
−1−γ

2 , we obtain

〈
f e(z1) − f e(z2), zt

〉

X− 1
2

=
∫

�

[
f e(z1) − f e(z2)

]
A−1zt dx

�
∥
∥ f ( Ã−1z1) − f ( Ã−1z2)

∥
∥
L

2N
N+2 (�)

‖ Ã−1zt‖
L

2N
N−2 (�)

� c0
∥
∥A−1z1 − A−1z2

∥
∥
H1−γ (�)

‖ Ã−1zt‖
X

1
2

� c0
∥
∥z

∥
∥
X

−1−γ
2

‖zt‖
X− 1

2

� c0‖z‖2
X− 1

2
+ c0‖zt‖2

X− 1
2
,

for some constant c0 > 0.
By Lemma 3.4, the solution z2t , zt are bounded in X− 1

2 and then

(
η2(t) − η1(t)

)〈�z2t , zt 〉X− 1
2

� |η2(t) − η1(t)|‖�z2t ‖X− 1
2
‖zt‖

X− 1
2

� c1|η2(t) − η1(t)|,

for some constant c1 > 0.
Additionally, by Schwarz inequality, Young inequality, and the embedding X0 ↪→

X− 1
2 ,

〈g1(t) − g2(t), zt 〉
X− 1

2
� c2‖g1(t) − g2(t)‖2X0 + c‖zt‖2

X− 1
2
,

for some constant c2 > 0.
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Replacing the previous estimates in (6.2) and using Lemma 2.8, we conclude that

d

dt

[
1

2

(

‖zt‖2
X− 1

2
+ ‖z‖2

X− 1
2

− ‖ Ã− 1
2 z‖2

X− 1
2

)]

� c

[
1

2

(

‖zt‖2
X− 1

2
+ ‖z‖2

X− 1
2

− ‖ Ã− 1
2 z‖2

X− 1
2

)]

+ c|η1(t) − η2(t)| + c‖g1(t) − g2(t)‖2L2(�)
,

for some constant c > 0. Consequently, we have

‖zt (t)‖2
X− 1

2
+ ‖z(t)‖2

X− 1
2

� c̃(‖zt (t)‖2
X− 1

2
+ ‖z(t)‖2

X− 1
2

− ‖ Ã− 1
2 z(t)‖2

X− 1
2
)

� ˜̃c
(

‖z10 − z20‖2
X− 1

2
+ ‖w1

0 − w2
0‖2

X− 1
2

− ‖ Ã− 1
2 z10 − Ã− 1

2 z20‖2
X− 1

2

+
∫ t

s
‖g1(r) − g2(r)‖2L2(�)

dr +
∫ t

s
|η1(r) − η2(r)|dr

)

eC(t−s)

� ˜̃c
(

‖z10 − z20‖2
X− 1

2
+ ‖w1

0 − w2
0‖2

X− 1
2

+
∫ t

s
‖g1(r) − g2(r)‖2L2(�)

dr

+
∫ t

s
|η1(r) − η2(r)|dr

)

eC(t−s),

that is,

‖u1(t) − u2(t)‖2
X

1
2

+ ‖u1t (t) − u2t (t)‖2
X

1
2

�

� ˜̃c
(

‖u10 − u20‖2
X

1
2

+ ‖v10 − v20‖2
X

1
2

+
∫ t

s
‖g1(r) − g2(r)‖2L2(�)

dr

+
∫ t

s
|η1(r) − η2(r)|dr

)

eC(t−s).

Hence, for any fixed t and s, t � s, s ∈ R, if

ηn
�1−−−→

n→∞ η, gn
�2−−−→

n→∞ g and lim
n→∞ ‖(un0, vn0 ) − (u0, v0)‖

X
1
2 ×X

1
2

= 0,

then

lim
n→∞

∥
∥(un(t), unt (t)) − (u(t), ut (t))

∥
∥
X

1
2 ×X

1
2

= 0,

and the proof is complete. 
�
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Theorem 6.2 (Characterization of the uniform attractor) The family of processes

{Sσ (t, s)}σ∈� associated with system (3.3) admits a uniform attractorA� in X
1
2 ×X

1
2

given by

A� =
⋃

σ∈�

Kσ (τ ), for all τ ∈ R,

where Kσ (τ ) is the kernel section at τ of process Sσ (t, s) with symbol σ .

Proof It follows by Theorem A.14. 
�
Corollary 6.3 The skew product flow associated with the problem (3.3) is a semigroup
with a global attractor and the conclusions of Theorem A.17 are valid.

A Appendix

In this appendix, we bring some fundamental definitions and concepts related to the
theory of evolution processes and uniform attractors. Additionally, we provide a result
concerning the existence and uniqueness of solutions.

A.1 Uniform attractors for systems of evolution processes

Let (�, d�) be a completemetric space and {θs}s∈R be a group of continuous operators
acting on �, that is, θ0σ = σ and θt (θsσ) = θt+sσ for all σ ∈ �, t, s ∈ R, and for
each s ∈ R, θs : � −→ � is a continuous map in �. Let � ⊆ � be a complete subset
of � which is invariant under {θs}s∈R, that is, θs� = � for all s ∈ R.

Remark A.1 In applications, the family of operators {θs}s∈R is typically defined as the
translations

θsσ(·) = σ(· + s), for all s ∈ R,

for time-dependent functionsσ . Consequently, these are often referred to as translation
operators.

For a given Banach space (Y , ‖ · ‖Y ) and for each σ ∈ �, let {Sσ (t, s) : t, s ∈
R, t � s} be an evolution process in Y , namely,

Sσ (t, τ ) Sσ (τ, s) = Sσ (t, s), for all t, τ, s ∈ R, t � τ � s,

Sσ (s, s) = I dY , for all s ∈ R,

where I dY : Y −→ Y denotes the identity map on Y . For simplicity, we will denote
{Sσ (t, s) : t, s ∈ R, t � s} simply by {Sσ (t, s)}.
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5682 V. T. Azevedo et al.

Definition A.2 A family {Sσ (t, s)}σ∈� of evolution processes is called a system of
evolution processes (or system for short), if the following translation-identity is
satisfied:

Sθhσ (t, s) = Sσ (t + h, s + h), for all σ ∈ �, t � s, t, s, h ∈ R. (A.1)

In this case, the parameter σ is called the symbol of the process {Sσ (t, s)} and the set
� is called the symbol space of the system {Sσ (t, s)}σ∈� .

Remark A.3 The translation-identity (A.1) is satisfied, for instance, provided the
underlying nonautonomous evolution equation has a unique solution.

Let σ ∈ � be given. A map u : R −→ Y is said to be a complete trajectory for the
process {Sσ (t, s)} if Sσ (t, s)u(s) = u(t) for all t � s, with t, s ∈ R. The kernel Kσ

of {Sσ (t, s)} is defined by

Kσ =
{
u(·) : u(·) is a bounded complete trajectory for Sσ (t, s)

}
.

On the other hand, for each s ∈ R, the set

Kσ (s) = {
u(s) : u(·) ∈ Kσ

}

stands for the kernel section at moment s. Clearly, kernel sections satisfy the invariance
property

Sσ (t, s)Kσ (s) = Kσ (t), for all t � s, t, s ∈ R.

ByB(Z), we denote the collection of all bounded subsets of a Banach space Z .
Next, we present the definition of uniform attractors for systems of processes.

Definition A.4 A compact setA� in Y is said to be a uniform (w.r.t. σ ∈ �) attractor
of a system {Sσ (t, s)}σ∈� of evolution processes in Y , if:

(i) A� is uniformly attracting, that is, for any s ∈ R and for any D ∈ B(Y ) it holds

lim
t→∞

[

sup
σ∈�

distY
(
Sσ (t, s)D,A�

)
]

= 0, (A.2)

where distY (·, ·) is the usual Hausdorff semidistance in Y ;
(ii) (Minimality) if A′

� is a closed set in Y uniformly attracting, then A� ⊂ A′
� .

Remark A.5 Since the symbol space� is invariant under translations, it follows by the
translation-identity (A.1) that

sup
σ∈�

distY
(
Sσ (t, 0)D,A�

) = sup
σ∈�

distY
(
Sθτ σ (t, 0)D,A�

)

= sup
σ∈�

distY
(
Sσ (t + τ, τ )D,A�

)
,

123



Existence, regularization and upper-semicontinuity… 5683

for all τ ∈ R. Consequently, the uniform attracting property (A.2) is equivalent to

lim
t→∞

[

sup
σ∈�

distY
(
Sσ (t, 0)D,A�

)
]

= 0,

which implies that, under the conditions considered involving limits, the initial time
can be set to s = 0.

In the sequel, we exhibit sufficient conditions to ensure the existence of uniform
attractors. Before that, we present some definitions and auxiliary results.

Definition A.6 A set B ⊂ Y is called a uniformly absorbing set for a system
{Sσ (t, s)}σ∈� in Y if for any τ ∈ R and any D ∈ B(Y ), there exists a time
t0 = t0(τ, D) � τ such that

⋃

σ∈�

Sσ (t, τ )D ⊆ B, for all t � t0.

Definition A.7 A system {Sσ (t, s)}σ∈� in Y is said to be uniformly (w.r.t. σ ∈ �)

asymptotically compact, if for any fixed s ∈ R, any sequence {tn}n∈N ⊂ [s,∞) with
tn → ∞, and any bounded sequences {un}n∈N ⊂ Y and {σn}n∈N ⊂ �, then the
sequence

{
Sσn (tn, s)un

}

n∈N has a convergent subsequence in Y .

The Definition A.8 in the following concerns the concept of contractive func-
tions, which is an important tool for providing sufficient conditions for a system
{Sσ (t, s)}σ∈� in Y to be uniformly (w.r.t. σ ∈ �) asymptotically compact.

Definition A.8 Let B ∈ B(Y ). A function �(·, ·, ·, ·) defined on Y × Y × � × �

is called a contractive function on B × B, if for any sequences {xn}n∈N ⊂ B and
{σn}n∈N ⊂ �, there are subsequences {xnk }k∈N and {σnk }k∈N such that

lim
k→∞ lim

l→∞ �(xnk , xnl , σnk , σnl ) = 0.

The set of all contractive functions on B × B is denoted by Contr(B, �).

Lemma A.9 [25, Theorem 4.2] Let {Sσ (t, s)}σ∈� be a system in Y which admits a
bounded uniformly (w.r.t σ ∈ �) absorbing set B ⊂ Y . Moreover, assume that for
every ε > 0, there exist T = T (B, ε) > 0 and �T ∈ Contr(B, �) such that

‖Sσ1(T , 0)x − Sσ2(T , 0)y‖Y � ε + 
T (x, y, σ1, σ2),

for all x, y ∈ B and all σ1, σ2 ∈ �. Then {Sσ (t, s)}σ∈� is uniformly (w.r.t. σ ∈ �)

asymptotically compact in Y .

Definition A.10 The uniform ω-limit set of a subset D ⊂ Y at initial time τ ∈ R is
represented by

ωτ,�(D) =
⋂

t�τ

⋃

σ∈�

⋃

r�t

Sσ (r , τ )D.
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5684 V. T. Azevedo et al.

For a given D ∈ B(Y ), it follows by [25, Lemma 3.2] that y ∈ ωτ,�(D), if and
only if there exist sequences {xn}n∈N ⊂ D, {σn}n∈N ⊂ �, {tn}n∈N ⊂ [τ,∞) with
limn→∞ tn = ∞, such that limn→∞ Sσn (tn, τ )xn = y.

In the next result, we give necessary and sufficient conditions for a system
{Sσ (t, s)}σ∈� to admit a uniform attractor.

Theorem A.11 [25, Theorem 3.4] A system {Sσ (t, s)}σ∈� in Y is uniformly (w.r.t.
σ ∈ �) asymptotically compact and has a bounded uniformly absorbing set B, if and
only if it admits a compact uniform attractor A� given by

A� = ω0,�(B) = ωτ,�(B) =
⋃

D∈B(Y )

ωτ,�(D),

for all τ ∈ R.

Remark A.12 If a system {Sσ (t, s)}σ∈� admits a uniform attractorA� , then any neigh-
borhood B of A� is a uniformly absorbing set, that is, for any τ ∈ R and any
D ∈ B(Y ), there exists a time t0 = t0(τ, D) � τ such that

⋃

σ∈�

Sσ (t, τ )D ⊆ B, for all t � t0.

Definition A.13 A system {Sσ (t, s)}σ∈� in Y is called (� × Y ,Y )-continuous, if for
each t, s ∈ R with t � s the mapping � × Y � (σ, x) 
−→ Sσ (t, s)x ∈ Y is
continuous.

Under the (� × Y ,Y )-continuity and the compactness of the symbol space �, we
may characterize the uniform attractor by kernel sections.

Theorem A.14 [25, Theorem 3.8] Let Y be a Banach space and� be a compact metric
space. Assume that a family of processes {Sσ (t, τ )}, σ ∈ �, satisfies the translation
identity (A.1), as well as the following conditions:

(i) The translation semigroup {θt }t�0 is continuous on �;
(ii) {Sσ (t, τ )}, σ ∈ �, is norm-to-weak continuous on Y ;
(iii) {Sσ (t, τ )}, σ ∈ �, has a bounded uniformly (w.r.t. σ ∈ �) absorbing set B0 in

Y ;
(iv) {Sσ (t, τ )}, σ ∈ �, is uniform (w.r.t. σ ∈ �) asymptotically compact in Y .

Then, {Sσ (t, τ )}, σ ∈ �, has a uniform (w.r.t. σ ∈ �) attractor A� satisfying

A� = ω0, �(B0) =
⋃

σ∈�

Kσ (s), for all s ∈ R,

where Kσ (s) is the section at t = s of the kernel Kσ of the process {Sσ (t, τ )} with
symbol σ .
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The characterization of a uniform attractor of a (� × Y ,Y )-continuous system via
kernel sections allows us to obtain a lifted negative semi-invariance

A� =
⋃

σ∈�

Kσ (t) =
⋃

σ∈�

Sσ (t, 0)Kσ (0) ⊂
⋃

σ∈�

Sσ (t, 0)A�, for all t � 0.

A.2 Skew product flow: global attractors and uniform attractors

Let (Y , ‖ ·‖Y ) be a Banach space,� be a compact symbol space with {θs}s∈R as being
a group of continuous operators acting on �, and let {Sσ (t, s)}σ∈� be a system in Y .

Definition A.15 A skew product flow associated with the system {Sσ (t, s)}σ∈� is a
family of maps {T (t) : Y × � → Y × �, t � 0} defined by

T (t)(y, σ ) = (Sσ (t, 0)y, θtσ),

for every (y, σ ) ∈ Y × � and t � 0.

Remark A.16 If a system {Sσ (t, s)}σ∈� is (Y ×�,Y )-continuous, then the associated
skew product flow is a semigroup.

Theorem A.17 [14, Theorem 5.1] Let {Sσ (t, s)}σ∈� be uniformly (w.r.t. σ ∈ �)

asymptotically compact system which is (� × Y ,Y )-continuous. The following
properties hold:

(i) The skew product {T (t) : Y × � → Y × �, t � 0} has a global attractor.
Moreover, this global attractor A satisfies

A =
⋃

σ∈�

Kσ (τ ) × {σ } for all τ ∈ R.

(ii) The projections �Y and �� defined by

�� Y × � −→ �

(u, σ ) 
−→ ��(u, σ ) = σ

and

�Y Y × � −→ Y
(u, σ ) 
−→ �Y (u, σ ) = u

satisfy ��(A) = � and �Y (A) = A� = ⋃
σ∈� Kσ (τ ), where A� is the

uniform attractor of {Sσ (t, s)}σ∈� .
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A.3 Existence and uniqueness of solutions

This last appendix section concerns with an existence and uniqueness result that will
be applied to solve problem (1.1). Let us consider (Y , ‖ · ‖Y ) a Banach space.

Definition A.18 A map F : R × Y −→ Y is called locally Lipschitz continuous in
Y uniformly in t on bounded intervals, if for any B ∈ B(Y ) and any interval I =
[t1, t2] ⊂ R there exists M = M(B, I ) > 0 such that

∥
∥F(t, x) − F(t, y)

∥
∥
Y � M‖x − y‖Y , for all x, y ∈ B, t ∈ I .

Definition A.19 A map F : R× Y −→ Y is called locally bounded in Y uniformly in
t on bounded intervals, if for any B ∈ B(Y ) and any interval I = [t1, t2] ⊂ R, there
exists M = M(B, I ) > 0 such that

∥
∥F(t, x)

∥
∥
Y � M, for all x ∈ B, t ∈ I .

Theorem A.20 (Existence and uniqueness of solutions) Let F ∈ C(R × Y ,Y ) and
Q(t) : Y −→ Y be a bounded linear operator defined for all t ∈ R. If R � t 
−→
Q(t) ∈ L(Y ) is continuous in the uniform operator topology and F is locally Lipschitz
continuous in Y and locally bounded in Y (both uniformly in t on bounded intervals),
then for any s ∈ R and any y0 ∈ Y there exists T max = Tmax (y0, s) > s such that
the initial value problem

⎧
⎨

⎩

dy

dt
+ Q(t)y = F(t, y), t > s,

y(s) = y0,

admits a unique solution y(·) = y(·, s; y0) ∈ C([s, Tmax ),Y
) ∩ C1((s, Tmax ),Y

)

which satisfies in Y the variation of constants formula

y(t, s; y0) = L(t, s)y0 +
∫ t

s
L(t, τ )F

(
τ, y(τ, s; y0)

)
dτ,

where L(t, s) = I − ∫ t
s Q(τ )L(τ, s) dτ , t � s. Moreover, either Tmax = ∞ or

lim
t→(Tmax )−

‖y(t)‖Y = ∞.

Proof The proof of the theorem is adapted from [3, Theorem 2.6]. For further details
on this, we refer the reader to [2, 21, 23]. 
�
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