Weak random attractors for the stochastic three-dimensional Navier-Stokes equations with multiplicative noise (2025)
- Authors:
- Autor USP: CARVALHO, ALEXANDRE NOLASCO DE - ICMC
- Unidade: ICMC
- DOI: 10.1137/24M1701794
- Subjects: EQUAÇÕES DE NAVIER-STOKES; ATRATORES; EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS; EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS; MECÂNICA DOS FLUÍDOS
- Keywords: 3D-Navier-Stokes equations; weak pullback attractors; weak random attractors; globally modified Navier-Stokes equations
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Philadelphia
- Date published: 2025
- Source:
- Título: SIAM Journal on Mathematical Analysis
- ISSN: 0036-1410
- Volume/Número/Paginação/Ano: v. 57, n. 4, p. 3718-3754, 2025
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
XU, Jiaohui et al. Weak random attractors for the stochastic three-dimensional Navier-Stokes equations with multiplicative noise. SIAM Journal on Mathematical Analysis, v. 57, n. 4, p. 3718-3754, 2025Tradução . . Disponível em: https://doi.org/10.1137/24M1701794. Acesso em: 18 fev. 2026. -
APA
Xu, J., Caraballo, T., Carvalho, A. N. de, & Valero, J. (2025). Weak random attractors for the stochastic three-dimensional Navier-Stokes equations with multiplicative noise. SIAM Journal on Mathematical Analysis, 57( 4), 3718-3754. doi:10.1137/24M1701794 -
NLM
Xu J, Caraballo T, Carvalho AN de, Valero J. Weak random attractors for the stochastic three-dimensional Navier-Stokes equations with multiplicative noise [Internet]. SIAM Journal on Mathematical Analysis. 2025 ; 57( 4): 3718-3754.[citado 2026 fev. 18 ] Available from: https://doi.org/10.1137/24M1701794 -
Vancouver
Xu J, Caraballo T, Carvalho AN de, Valero J. Weak random attractors for the stochastic three-dimensional Navier-Stokes equations with multiplicative noise [Internet]. SIAM Journal on Mathematical Analysis. 2025 ; 57( 4): 3718-3754.[citado 2026 fev. 18 ] Available from: https://doi.org/10.1137/24M1701794 - Compact convergence approach to reduction infinite dimensional systems to finite dimensions: applications
- Parabolic equations with localized large diffusion: rate of convergence of attractors
- Uma estimativa da dimensão fractal de atratores de sistemas dinâmicos gradient-like
- Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system
- Lower semicontinuity of attractors for gradient systems
- A general approximation scheme for attractors of abstract parabolic problems
- Non-autonomous semilinear evolution equations with almost sectorial operators
- Spatial homogeneity in parabolic problems with nonlinear boundary conditions
- Dynamics in dumbbell domains I: continuity of the set of equilibria
- Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations
Informações sobre o DOI: 10.1137/24M1701794 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3273910.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
