Filtros : "Communications in Mathematical Physics" Limpar

Filtros



Refine with date range


  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: FÍSICA MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; KŘIŽKA, Libor. Positive energy representations of affine vertex algebras. Communications in Mathematical Physics, Heidelberg, n. 2, p. 841-891, 2021. Disponível em: < https://doi.org/10.1007/s00220-020-03861-7 > DOI: 10.1007/s00220-020-03861-7.
    • APA

      Futorny, V., & Křižka, L. (2021). Positive energy representations of affine vertex algebras. Communications in Mathematical Physics, ( 2), 841-891. doi:10.1007/s00220-020-03861-7
    • NLM

      Futorny V, Křižka L. Positive energy representations of affine vertex algebras [Internet]. Communications in Mathematical Physics. 2021 ;( 2): 841-891.Available from: https://doi.org/10.1007/s00220-020-03861-7
    • Vancouver

      Futorny V, Křižka L. Positive energy representations of affine vertex algebras [Internet]. Communications in Mathematical Physics. 2021 ;( 2): 841-891.Available from: https://doi.org/10.1007/s00220-020-03861-7
  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: SISTEMAS HAMILTONIANOS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JÄGER, Tobias; KOROPECKI, Andres; TAL, Fábio Armando. On the onset of diffusion in the kicked Harper model. Communications in Mathematical Physics, Berlin, Springer, v. 383, p. 953-980, 2021. Disponível em: < https://doi.org/10.1007/s00220-021-03995-2 > DOI: 10.1007/s00220-021-03995-2.
    • APA

      Jäger, T., Koropecki, A., & Tal, F. A. (2021). On the onset of diffusion in the kicked Harper model. Communications in Mathematical Physics, 383, 953-980. doi:10.1007/s00220-021-03995-2
    • NLM

      Jäger T, Koropecki A, Tal FA. On the onset of diffusion in the kicked Harper model [Internet]. Communications in Mathematical Physics. 2021 ; 383 953-980.Available from: https://doi.org/10.1007/s00220-021-03995-2
    • Vancouver

      Jäger T, Koropecki A, Tal FA. On the onset of diffusion in the kicked Harper model [Internet]. Communications in Mathematical Physics. 2021 ; 383 953-980.Available from: https://doi.org/10.1007/s00220-021-03995-2
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALADI, Viviane; BRANDÃO, Daniel Smania. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters. Communications in Mathematical Physics, New York, v. 385, n. 3, p. 1957-2007, 2021. Disponível em: < https://doi.org/10.1007/s00220-021-04015-z > DOI: 10.1007/s00220-021-04015-z.
    • APA

      Baladi, V., & Brandão, D. S. (2021). Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters. Communications in Mathematical Physics, 385( 3), 1957-2007. doi:10.1007/s00220-021-04015-z
    • NLM

      Baladi V, Brandão DS. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters [Internet]. Communications in Mathematical Physics. 2021 ; 385( 3): 1957-2007.Available from: https://doi.org/10.1007/s00220-021-04015-z
    • Vancouver

      Baladi V, Brandão DS. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters [Internet]. Communications in Mathematical Physics. 2021 ; 385( 3): 1957-2007.Available from: https://doi.org/10.1007/s00220-021-04015-z
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: PROCESSOS ALEATÓRIOS, ANÁLISE ASSINTÓTICA, MATRIZES, FÍSICA MATEMÁTICA

    Disponível em 2022-06-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-FINKELSHTEIN, Andrei; SILVA, Guilherme Lima Ferreira da. Spectral curves, variational problems and the Hermitian matrix model with external source. Communications in Mathematical Physics, New York, v. 383, n. 3, p. 2163-2242, 2021. Disponível em: < https://doi.org/10.1007/s00220-021-03999-y > DOI: 10.1007/s00220-021-03999-y.
    • APA

      Martínez-Finkelshtein, A., & Silva, G. L. F. da. (2021). Spectral curves, variational problems and the Hermitian matrix model with external source. Communications in Mathematical Physics, 383( 3), 2163-2242. doi:10.1007/s00220-021-03999-y
    • NLM

      Martínez-Finkelshtein A, Silva GLF da. Spectral curves, variational problems and the Hermitian matrix model with external source [Internet]. Communications in Mathematical Physics. 2021 ; 383( 3): 2163-2242.Available from: https://doi.org/10.1007/s00220-021-03999-y
    • Vancouver

      Martínez-Finkelshtein A, Silva GLF da. Spectral curves, variational problems and the Hermitian matrix model with external source [Internet]. Communications in Mathematical Physics. 2021 ; 383( 3): 2163-2242.Available from: https://doi.org/10.1007/s00220-021-03999-y
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: PROCESSOS ALEATÓRIOS, ANÁLISE ASSINTÓTICA, MATRIZES, FÍSICA MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Guilherme Lima Ferreira da; ZHANG, Lun. Large n limit for the product of two coupled random matrices. Communications in Mathematical Physics, New York, v. 377, n. 3, p. 2345-2427, 2020. Disponível em: < https://doi.org/10.1007/s00220-020-03763-8 > DOI: 10.1007/s00220-020-03763-8.
    • APA

      Silva, G. L. F. da, & Zhang, L. (2020). Large n limit for the product of two coupled random matrices. Communications in Mathematical Physics, 377( 3), 2345-2427. doi:10.1007/s00220-020-03763-8
    • NLM

      Silva GLF da, Zhang L. Large n limit for the product of two coupled random matrices [Internet]. Communications in Mathematical Physics. 2020 ; 377( 3): 2345-2427.Available from: https://doi.org/10.1007/s00220-020-03763-8
    • Vancouver

      Silva GLF da, Zhang L. Large n limit for the product of two coupled random matrices [Internet]. Communications in Mathematical Physics. 2020 ; 377( 3): 2345-2427.Available from: https://doi.org/10.1007/s00220-020-03763-8
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: FÍSICA MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo; ENDO, Eric Ossami; VAN ENTER, Aernout C.D; LE NY, Arnaud. Entropic repulsion and lack of the g-measure property for Dyson models. Communications in Mathematical Physics, Heidelberg, v. 363, n. 3, p. 767-788, 2018. Disponível em: < http://dx.doi.org/10.1007/s00220-018-3233-6 > DOI: 10.1007/s00220-018-3233-6.
    • APA

      Bissacot, R., Endo, E. O., van Enter, A. C. D., & Le Ny, A. (2018). Entropic repulsion and lack of the g-measure property for Dyson models. Communications in Mathematical Physics, 363( 3), 767-788. doi:10.1007/s00220-018-3233-6
    • NLM

      Bissacot R, Endo EO, van Enter ACD, Le Ny A. Entropic repulsion and lack of the g-measure property for Dyson models [Internet]. Communications in Mathematical Physics. 2018 ; 363( 3): 767-788.Available from: http://dx.doi.org/10.1007/s00220-018-3233-6
    • Vancouver

      Bissacot R, Endo EO, van Enter ACD, Le Ny A. Entropic repulsion and lack of the g-measure property for Dyson models [Internet]. Communications in Mathematical Physics. 2018 ; 363( 3): 767-788.Available from: http://dx.doi.org/10.1007/s00220-018-3233-6
  • Source: Communications in Mathematical Physics. Unidade: IF

    Subjects: MECÂNICA QUÂNTICA, SIMETRIA (FÍSICA DE PARTÍCULAS), SISTEMAS HAMILTONIANOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZA, Nelson Javier Buitrago; BRU, J. -B.; PEDRA, Walter Alberto de Siqueira. Decay of complex-time determinantal and pfaffian correlation functionals in lattices. Communications in Mathematical Physics, New York, v. 360, n. ju 2018, p. 715-726, 2018. Disponível em: < https://link.springer.com/article/10.1007%2Fs00220-018-3121-0 > DOI: 10.1007/s00220-018-3121-0.
    • APA

      Aza, N. J. B., Bru, J. -B., & Pedra, W. A. de S. (2018). Decay of complex-time determinantal and pfaffian correlation functionals in lattices. Communications in Mathematical Physics, 360( ju 2018), 715-726. doi:10.1007/s00220-018-3121-0
    • NLM

      Aza NJB, Bru J-B, Pedra WA de S. Decay of complex-time determinantal and pfaffian correlation functionals in lattices [Internet]. Communications in Mathematical Physics. 2018 ; 360( ju 2018): 715-726.Available from: https://link.springer.com/article/10.1007%2Fs00220-018-3121-0
    • Vancouver

      Aza NJB, Bru J-B, Pedra WA de S. Decay of complex-time determinantal and pfaffian correlation functionals in lattices [Internet]. Communications in Mathematical Physics. 2018 ; 360( ju 2018): 715-726.Available from: https://link.springer.com/article/10.1007%2Fs00220-018-3121-0
  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: FÍSICA MATEMÁTICA, GEOMETRIA ALGÉBRICA, ANÁLISE FUNCIONAL, ÁLGEBRAS DE OPERADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAKAWA, Tomoyuki; FUTORNY, Vyacheslav; RAMIREZ, Luis Enrique. Weight representations of admissible affine vertex algebras. Communications in Mathematical Physics, Heidelberg, v. 353, p. 1151–1178, 2017. Disponível em: < https://dx.doi.org/10.1007/s00220-017-2872-3 > DOI: 10.1007/s00220-017-2872-3.
    • APA

      Arakawa, T., Futorny, V., & Ramirez, L. E. (2017). Weight representations of admissible affine vertex algebras. Communications in Mathematical Physics, 353, 1151–1178. doi:10.1007/s00220-017-2872-3
    • NLM

      Arakawa T, Futorny V, Ramirez LE. Weight representations of admissible affine vertex algebras [Internet]. Communications in Mathematical Physics. 2017 ; 353 1151–1178.Available from: https://dx.doi.org/10.1007/s00220-017-2872-3
    • Vancouver

      Arakawa T, Futorny V, Ramirez LE. Weight representations of admissible affine vertex algebras [Internet]. Communications in Mathematical Physics. 2017 ; 353 1151–1178.Available from: https://dx.doi.org/10.1007/s00220-017-2872-3
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; GRANTCHAROV, Dimitar; RAMÍREZ, Luis Enrique. New singular Gelfand–Tsetlin gl(n)-modules of index 2. Communications in Mathematical Physics, Heidelberg, v. 355, n. 3, p. 1209–1241, 2017. Disponível em: < https://dx.doi.org/10.1007/s00220-017-2967-x > DOI: 10.1007/s00220-017-2967-x.
    • APA

      Futorny, V., Grantcharov, D., & Ramírez, L. E. (2017). New singular Gelfand–Tsetlin gl(n)-modules of index 2. Communications in Mathematical Physics, 355( 3), 1209–1241. doi:10.1007/s00220-017-2967-x
    • NLM

      Futorny V, Grantcharov D, Ramírez LE. New singular Gelfand–Tsetlin gl(n)-modules of index 2 [Internet]. Communications in Mathematical Physics. 2017 ; 355( 3): 1209–1241.Available from: https://dx.doi.org/10.1007/s00220-017-2967-x
    • Vancouver

      Futorny V, Grantcharov D, Ramírez LE. New singular Gelfand–Tsetlin gl(n)-modules of index 2 [Internet]. Communications in Mathematical Physics. 2017 ; 355( 3): 1209–1241.Available from: https://dx.doi.org/10.1007/s00220-017-2967-x
  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, MODELO DE ISING

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo; CASSANDRO, Marzio; CIOLETTI, Leandro; PRESUTTI, Errico. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields. Communications in Mathematical Physics, Berlin, v. 337, n. 1, p. 41-53, 2015. Disponível em: < http://dx.doi.org/10.1007/s00220-014-2268-6 > DOI: 10.1007/s00220-014-2268-6.
    • APA

      Bissacot, R., Cassandro, M., Cioletti, L., & Presutti, E. (2015). Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields. Communications in Mathematical Physics, 337( 1), 41-53. doi:10.1007/s00220-014-2268-6
    • NLM

      Bissacot R, Cassandro M, Cioletti L, Presutti E. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields [Internet]. Communications in Mathematical Physics. 2015 ; 337( 1): 41-53.Available from: http://dx.doi.org/10.1007/s00220-014-2268-6
    • Vancouver

      Bissacot R, Cassandro M, Cioletti L, Presutti E. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields [Internet]. Communications in Mathematical Physics. 2015 ; 337( 1): 41-53.Available from: http://dx.doi.org/10.1007/s00220-014-2268-6
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Assunto: FÍSICA MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      O'CARROLL, Michael; FARIA DA VEIGA, Paulo Afonso; FRANCISCO NETO, Antonio. Analytic binding energies for two-Baryon bound states in 2 + 1 strongly coupled lattice QCD with two-flavors. Communications in Mathematical Physics, Heidelberg, v. 321, n. 1, p. 249\2013282, 2013. Disponível em: < http://dx.doi.org/10.1007/s00220-013-1688-z > DOI: 10.1007/s00220-013-1688-z.
    • APA

      O'Carroll, M., Faria da Veiga, P. A., & Francisco Neto, A. (2013). Analytic binding energies for two-Baryon bound states in 2 + 1 strongly coupled lattice QCD with two-flavors. Communications in Mathematical Physics, 321( 1), 249\2013282. doi:10.1007/s00220-013-1688-z
    • NLM

      O'Carroll M, Faria da Veiga PA, Francisco Neto A. Analytic binding energies for two-Baryon bound states in 2 + 1 strongly coupled lattice QCD with two-flavors [Internet]. Communications in Mathematical Physics. 2013 ; 321( 1): 249\2013282.Available from: http://dx.doi.org/10.1007/s00220-013-1688-z
    • Vancouver

      O'Carroll M, Faria da Veiga PA, Francisco Neto A. Analytic binding energies for two-Baryon bound states in 2 + 1 strongly coupled lattice QCD with two-flavors [Internet]. Communications in Mathematical Physics. 2013 ; 321( 1): 249\2013282.Available from: http://dx.doi.org/10.1007/s00220-013-1688-z
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SAGHIN, Radu; VARGAS, Edson. Invariant measures for cherry flows. Communications in Mathematical Physics, New York, v. 317, n. 1, p. 55-67, 2013. Disponível em: < http://dx.doi.org/10.1007/s00220-012-1611-z > DOI: 10.1007/s00220-012-1611-z.
    • APA

      Saghin, R., & Vargas, E. (2013). Invariant measures for cherry flows. Communications in Mathematical Physics, 317( 1), 55-67. doi:10.1007/s00220-012-1611-z
    • NLM

      Saghin R, Vargas E. Invariant measures for cherry flows [Internet]. Communications in Mathematical Physics. 2013 ; 317( 1): 55-67.Available from: http://dx.doi.org/10.1007/s00220-012-1611-z
    • Vancouver

      Saghin R, Vargas E. Invariant measures for cherry flows [Internet]. Communications in Mathematical Physics. 2013 ; 317( 1): 55-67.Available from: http://dx.doi.org/10.1007/s00220-012-1611-z
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERTZ, Federico Rodriguez; HERTZ, M. A. Rodriguez; TAHZIBI, Ali; URES, R. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Communications in Mathematical Physics, Heidelberg, v. 306, n. 1, p. 35-49, 2011. Disponível em: < http://dx.doi.org/10.1007/s00220-011-1275-0 > DOI: 10.1007/s00220-011-1275-0.
    • APA

      Hertz, F. R., Hertz, M. A. R., Tahzibi, A., & Ures, R. (2011). Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Communications in Mathematical Physics, 306( 1), 35-49. doi:10.1007/s00220-011-1275-0
    • NLM

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces [Internet]. Communications in Mathematical Physics. 2011 ; 306( 1): 35-49.Available from: http://dx.doi.org/10.1007/s00220-011-1275-0
    • Vancouver

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces [Internet]. Communications in Mathematical Physics. 2011 ; 306( 1): 35-49.Available from: http://dx.doi.org/10.1007/s00220-011-1275-0
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SAGHIN, Radu; SUN, Wenxiang; VARGAS, Edson. On Dirac physical measures for transitive flows. Communications in Mathematical Physics, Heidelberg, v. 298, n. 3, p. 741-756, 2010. Disponível em: < http://dx.doi.org/10.1007/s00220-010-1077-9 > DOI: 10.1007/s00220-010-1077-9.
    • APA

      Saghin, R., Sun, W., & Vargas, E. (2010). On Dirac physical measures for transitive flows. Communications in Mathematical Physics, 298( 3), 741-756. doi:10.1007/s00220-010-1077-9
    • NLM

      Saghin R, Sun W, Vargas E. On Dirac physical measures for transitive flows [Internet]. Communications in Mathematical Physics. 2010 ; 298( 3): 741-756.Available from: http://dx.doi.org/10.1007/s00220-010-1077-9
    • Vancouver

      Saghin R, Sun W, Vargas E. On Dirac physical measures for transitive flows [Internet]. Communications in Mathematical Physics. 2010 ; 298( 3): 741-756.Available from: http://dx.doi.org/10.1007/s00220-010-1077-9
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: RELATIVIDADE (FÍSICA)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto; GIANNONI, Fábio; PICCIONE, Paolo. Genericity of nondegeneracy for light rays in stationary spacetimes. Communications in Mathematical Physics, New York, v. 287, n. 3, p. 903-923, 2009. Disponível em: < https://doi.org/10.1007/s00220-009-0742-3 > DOI: 10.1007/s00220-009-0742-3.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2009). Genericity of nondegeneracy for light rays in stationary spacetimes. Communications in Mathematical Physics, 287( 3), 903-923. doi:10.1007/s00220-009-0742-3
    • NLM

      Giambó R, Giannoni F, Piccione P. Genericity of nondegeneracy for light rays in stationary spacetimes [Internet]. Communications in Mathematical Physics. 2009 ; 287( 3): 903-923.Available from: https://doi.org/10.1007/s00220-009-0742-3
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Genericity of nondegeneracy for light rays in stationary spacetimes [Internet]. Communications in Mathematical Physics. 2009 ; 287( 3): 903-923.Available from: https://doi.org/10.1007/s00220-009-0742-3
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: TOPOLOGIA ALGÉBRICA, GEOMETRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SPREAFICO, Mauro Flávio; ZERBINI, S. Spectral analysis and zeta determinant on the deformed spheres. Communications in Mathematical Physics, Netherlands, v. 273, n. 3, p. 677-704, 2007. Disponível em: < http://dx.doi.org/10.1007/s00220-007-0229-z > DOI: 10.1007/s00220-007-0229-z.
    • APA

      Spreafico, M. F., & Zerbini, S. (2007). Spectral analysis and zeta determinant on the deformed spheres. Communications in Mathematical Physics, 273( 3), 677-704. doi:10.1007/s00220-007-0229-z
    • NLM

      Spreafico MF, Zerbini S. Spectral analysis and zeta determinant on the deformed spheres [Internet]. Communications in Mathematical Physics. 2007 ; 273( 3): 677-704.Available from: http://dx.doi.org/10.1007/s00220-007-0229-z
    • Vancouver

      Spreafico MF, Zerbini S. Spectral analysis and zeta determinant on the deformed spheres [Internet]. Communications in Mathematical Physics. 2007 ; 273( 3): 677-704.Available from: http://dx.doi.org/10.1007/s00220-007-0229-z
  • Source: Communications in Mathematical Physics. Unidade: IF

    Subjects: EQUAÇÃO DE SCHRODINGER, SISTEMAS HAMILTONIANOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GENTILE, Guido; CORTEZ, Daniel Augusto; BARATA, João Carlos Alves. Stability for quasi-periodically perturbed Hill’s equations. Communications in Mathematical Physics, New York, v. 260, n. 2, p. 403-443, 2005. Disponível em: < http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget="_blank >.
    • APA

      Gentile, G., Cortez, D. A., & Barata, J. C. A. (2005). Stability for quasi-periodically perturbed Hill’s equations. Communications in Mathematical Physics, 260( 2), 403-443. Recuperado de http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget="_blank
    • NLM

      Gentile G, Cortez DA, Barata JCA. Stability for quasi-periodically perturbed Hill’s equations [Internet]. Communications in Mathematical Physics. 2005 ; 260( 2): 403-443.Available from: http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget="_blank
    • Vancouver

      Gentile G, Cortez DA, Barata JCA. Stability for quasi-periodically perturbed Hill’s equations [Internet]. Communications in Mathematical Physics. 2005 ; 260( 2): 403-443.Available from: http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget="_blank
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS HAMILTONIANOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael; ROMERO, Sandro Vieira. Covariant Poisson brackets in geometric field theory. Communications in Mathematical Physics, New York, v. 256, n. 2, p. 375-410, 2005. Disponível em: < https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8 >.
    • APA

      Forger, F. M., & Romero, S. V. (2005). Covariant Poisson brackets in geometric field theory. Communications in Mathematical Physics, 256( 2), 375-410. Recuperado de https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
    • NLM

      Forger FM, Romero SV. Covariant Poisson brackets in geometric field theory [Internet]. Communications in Mathematical Physics. 2005 ; 256( 2): 375-410.Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
    • Vancouver

      Forger FM, Romero SV. Covariant Poisson brackets in geometric field theory [Internet]. Communications in Mathematical Physics. 2005 ; 256( 2): 375-410.Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: TEORIA DA REPRESENTAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIMITROV, Ivan; FUTORNY, Vyacheslav; PENKOV, Ivan. A reduction theorem for highest weight modules over toroidal Lie algebras. Communications in Mathematical Physics[S.l.], v. 250, n. 1, p. 47-68, 2004. Disponível em: < https://doi.org/10.1007/s00220-004-1142-3 > DOI: 10.1007/s00220-004-1142-3.
    • APA

      Dimitrov, I., Futorny, V., & Penkov, I. (2004). A reduction theorem for highest weight modules over toroidal Lie algebras. Communications in Mathematical Physics, 250( 1), 47-68. doi:10.1007/s00220-004-1142-3
    • NLM

      Dimitrov I, Futorny V, Penkov I. A reduction theorem for highest weight modules over toroidal Lie algebras [Internet]. Communications in Mathematical Physics. 2004 ; 250( 1): 47-68.Available from: https://doi.org/10.1007/s00220-004-1142-3
    • Vancouver

      Dimitrov I, Futorny V, Penkov I. A reduction theorem for highest weight modules over toroidal Lie algebras [Internet]. Communications in Mathematical Physics. 2004 ; 250( 1): 47-68.Available from: https://doi.org/10.1007/s00220-004-1142-3
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Assunto: FÍSICA MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA DA VEIGA, Paulo Afonso; O'CARROLL, Michael; SCHOR, Ricardo. Existence of baryons, baryon spectrum and mass splitting in strong coupling lattice QCD. Communications in Mathematical Physics[S.l.], v. 245, p. 383-406, 2004.
    • APA

      Faria da Veiga, P. A., O'Carroll, M., & Schor, R. (2004). Existence of baryons, baryon spectrum and mass splitting in strong coupling lattice QCD. Communications in Mathematical Physics, 245, 383-406.
    • NLM

      Faria da Veiga PA, O'Carroll M, Schor R. Existence of baryons, baryon spectrum and mass splitting in strong coupling lattice QCD. Communications in Mathematical Physics. 2004 ; 245 383-406.
    • Vancouver

      Faria da Veiga PA, O'Carroll M, Schor R. Existence of baryons, baryon spectrum and mass splitting in strong coupling lattice QCD. Communications in Mathematical Physics. 2004 ; 245 383-406.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021