Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters (2021)
- Authors:
- Autor USP: BRANDÃO, DANIEL SMANIA - ICMC
- Unidade: ICMC
- DOI: 10.1007/s00220-021-04015-z
- Subjects: SISTEMAS DINÂMICOS; TEORIA ERGÓDICA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Communications in Mathematical Physics
- ISSN: 0010-3616
- Volume/Número/Paginação/Ano: v. 385, n. 3, p. 1957-2007, Aug. 2021
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
BALADI, Viviane e SMANIA, Daniel. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters. Communications in Mathematical Physics, v. 385, n. 3, p. 1957-2007, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-021-04015-z. Acesso em: 11 jan. 2026. -
APA
Baladi, V., & Smania, D. (2021). Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters. Communications in Mathematical Physics, 385( 3), 1957-2007. doi:10.1007/s00220-021-04015-z -
NLM
Baladi V, Smania D. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters [Internet]. Communications in Mathematical Physics. 2021 ; 385( 3): 1957-2007.[citado 2026 jan. 11 ] Available from: https://doi.org/10.1007/s00220-021-04015-z -
Vancouver
Baladi V, Smania D. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters [Internet]. Communications in Mathematical Physics. 2021 ; 385( 3): 1957-2007.[citado 2026 jan. 11 ] Available from: https://doi.org/10.1007/s00220-021-04015-z - On the hyperbolicity of the period-doubling fixed point
- Puzzle geometry and rigidity: the fibonacci cycle is hyperbolic
- Analyticity of the SRB measure for holomorphic families of quadratic-like collet-eckmann maps
- Rigidity for piecewise smooth homeomorphisms on the circle
- Ergodic transport theory and piecewise analytic subactions for analytic dynamics
- Metric stability for random walks (with applications in renormalization theory)
- Phase space universality for multimodal maps
- Eigenvalues of fibonacci stochastic adding machine
- Alternative proofs of linear response for piecewise expanding unimodal maps
- O curioso atrator de Lorenz
Informações sobre o DOI: 10.1007/s00220-021-04015-z (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3018990_postprint.pdf | Direct link | ||
| 3018990.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
