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Abstract. For ft(x) = t − x2 the quadratic family, we define the fractional
susceptibility function ΨΩ

φ,t0
(η, z) of ft, associated to a C1 observable φ at a

stochastic parameter t0. We also define an approximate, “frozen,” fractional
susceptibility function Ψfr

φ,t0
(η, z) such that limη→1 Ψfr

φ,t0
(η, z) is the suscep-

tibility function Ψφ,t0(z) studied by Ruelle. If t0 is Misiurewicz–Thurston, we

show that Ψfr
φ,t0

(1/2, z) has a pole at z = 1 for generic φ if J1/2(t0) 6= 0, where

Jη(t) =
∑

∞

k=0
sgn(Dfkt (c1))|Df

k
t (c1)|

−η , with c1 = t the critical value of ft.

We introduce “Whitney” fractional integrals Iη,Ω and derivatives Mη,Ω on
suitable sets Ω. We formulate conjectures on ΨΩ

φ,t0
(η, z) and Jη(t), supported

by our results onMη,Ω and Ψfr
φ,t0

(1/2, z), for the former, and numerical exper-

iments, for the latter. In particular, we expect that ΨΩ
φ,t0

(1/2, z) is singular

at z = 1 for Collet–Eckmann t0 and generic φ.
We view this work as a step towards the resolution of the paradox that

Ψφ,t0 (z) is holomorphic at z = 1 for Misiurewicz–Thurston ft0 [35, 17], despite
lack of linear response [8].
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1. Introduction

For real1 parameters t ∈ (1, 2), we consider the quadratic family

ft(x) = t− x2 , x ∈ [−2, 2] .

The critical point is c = c0,t = 0, the critical value is c1,t = t < |at| where

at := −1−
√
1+4t

2 ∈ (−2, 0) satisfies ft(at) = at = ft(−at). More generally, we

denote the postcritical points by ck,t = fkt (c) for k ≥ 0.
We are interested in the set S of (so-called stochastic) parameters t for which

ft admits an absolutely continuous invariant probability measure µt = ρtdm. The
set S contains the Collet–Eckmann (CE) parameters t, i.e. those t such that there
exist λc > 1 and K0 ≥ 1 with

(1) |Dfkt (c1,t)| ≥ λkc , ∀k ≥ K0 .

Linear response is the study of differentiability of the map t 7→ µt, on suitable
subsets of S, in a suitable topology in the image, viewing µt as a Radon measure or
a distribution of higher order by introducing smooth observables φ. In the simpler
setting of families t 7→ Ft of smooth expanding (or mixing smooth hyperbolic) maps
with ∂tFt = Xt ◦ Ft, the map

t 7→ Rφ(t) :=

∫
φdµt

1The map for t = 2 is the full parabola 2 − x2 on [−2, 2], which can only be perturbed by
taking t < 2. For t = 1, we get a half-parabola on [0, 1].
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is differentiable, and the derivative ∂sRφ(s) at s = t is, by [34], the value at z = 1
of the susceptibility function, which is the power series (see also [3, §1])

Ψφ(z) := Ψφ,t(z) =

∞∑

k=0

zk
∫
(φ ◦ F kt )′ (Xtρt) dm.

Returning to the quadratic family ft, it is well known since the work of Thunberg
[40] (see [14, Theorem 1.30] for a more recent statement) that2 t 7→ µt is severely
discontinuous if one does not restrict to Collet–Eckmann parameters with bounded
constants. However, this map is continuous when restricted to a suitable (large) set
of good parameters [42]. More recently, [8, Cor 1.6] showed that at almost every
Collet–Eckmann parameter t, and for every 1/2 Hölder observable φ, the function
Rφ(s) is η-Hölder for all η < 1/2 at s = t, in the sense of Whitney, on a set
Ω<1/2 = Ω<1/2(t) of Collet–Eckmann parameters having t as a density point.

One of the purposes of the present work is to reconcile two apparently con-
tradictory results: In 2005, Ruelle [35] considered the full unimodal map ft (and
more generally, Chebyshev polynomials ft of degree D ≥ 2). He showed that the
susceptibility function (note that Xt := ∂tft ◦ f−1

t ≡ 1 for the quadratic family:
Appendix B discusses the condition that Xt vanishes at endpoints)

(2) Ψφ(z) = Ψφ,t(z) =

∞∑

k=0

zk
∫
(φ ◦ fkt )′ ρt dm

admits a meromorphic extension to C. Ruelle also obtained the remarkable fact
that the residue of the possible pole at z = 1 vanishes (for all observables φ ∈ C1).
Soon thereafter, with Jiang [17], they generalised this result to the set MT of
Misiurewicz–Thurston parameters, i.e., those t for which there exist L ≥ 1 and
P ≥ 1 with y = fLt (c) periodic of minimal period P , with |DfPt (y)| > 1. This raised
the hope that s 7→ Rφ(s) :=

∫
φ(x)ρs(x) dm could be differentiable (in the sense

of Whitney, on an appropriate subset of S) at t ∈ MT, with ∂sRφ(s)|s=t = Ψφ(1).
In3 2015, however, with Benedicks and Schnellmann [8], one of us showed that for
any mixing t ∈ MT, there exist φ ∈ C∞, and a set Ω1/2 = Ω1/2(t) ⊂ S containing
t as an accumulation point such that

(3) 0 < lim inf
δ→0

t+δ∈Ω1/2

|Rφ(t+ δ)−Rφ(t)|√
|δ|

≤ lim sup
δ→0

t+δ∈Ω1/2

|Rφ(t+ δ)−Rφ(t)|√
|δ|

<∞ .

A hard open question is whether t is a Lebesgue density point of Ω1/2: In the
affirmative, (3) would not be compatible with Whitney-differentiability of Rφ(t)
at t in any natural sense, a strict paradox. Otherwise, the bounds (3), may be
compatible with differentiability in the sense of Whitney, although this would still
be counter-intuitive.

Aiming to shed4 some light on this puzzling state of affairs, we introduce below,
for ℜη ∈ (0, 1) and an appropriate positive measure set Ω ⊂ S, a two-variable
fractional susceptibility function ΨΩ

φ,t(η, z) in §2.2. The idea is to replace ordinary

2As a Radon measure, say — using distributions of higher order does not help.
3In the decade between 2005 and 2015, the hope that Rφ(s) could be differentiable in the sense

of Whitney had already been diminished by the papers [10] and [36].
4Another goal is to give a probabilistic analysis (analogous to the central limit theorem of de

Lima–Smania [22] in the piecewise expanding setting) of the breakdown of C1/2 regularity of the
acim in transversal families of smooth unimodal maps with a quadratic critical point.
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derivatives by fractional derivatives (Marchaud derivatives are convenient, in par-
ticular because they vanish on constants). The main hurdle is that Ω has positive
measure but does not contain any nontrivial interval: Despite the vast existing lit-
erature on fractional derivatives, we did not find any suitable notion of fractional
derivatives on such sets (we propose a definition Mη,Ω in Section 7). In Conjec-
tures A and A+, we formulate expected properties of ΨΩ

φ,t(η, z). We also introduce

in §2.2 an approximate, “frozen” fractional susceptibility function Ψfr
φ,t(η, z), where

the dynamics is frozen at a parameter t (so that Ω does not appear and ordinary
Marchaud derivatives can be used), and we study its properties in Theorem C for
t ∈ MT. (We expect that the techniques of the proof can be extended to TSR
parameters defined in (4), see Remarks 5.1 and D.2 and Footnote 16.)

We next briefly discuss the organisation of the paper and key points in the proof
of our main rigorous result, Theorem C. Section 2 contains the definitions of the
fractional susceptibility functions. (Another approximate fractional susceptibility
function, the response function Ψrsp

φ,t(η, z), is useful to prove Theorem C.) Sections 3
and 4 are devoted to preparatory material on fractional integrals and derivatives.
We mention here that the case of piecewise expanding maps [7, 10, 9, 3] is easier,
because the invariant density appearing there is a sum of a nice function with a
countable sum of Heaviside functions. For the quadratic maps, the invariant den-
sity (50) involves a sum of quadratic spikes. The fact, used in [7, 10, 9], that the
derivative of a Heaviside function is a Dirac mass is mirrored in the present work by
Abel’s remark that the one-sided half-integral of a quadratic spike is a Heaviside,
so that its one-sided Marchaud half derivative is a Dirac mass (see Lemmas 3.1
and 4.4). However, one-sided derivatives do not seem appropriate to define reason-
able fractional susceptibility functions. The two-sided half integrals, respectively
derivatives, of quadratic spikes (Lemmas 3.2 and 4.4) involve an additional loga-
rithmic, respectively5 polar, term. The corresponding “iterated pole” is one of the
features of Theorem C in Section 5 (see Lemma 5.6).

An unexpected ingredient of Theorem C is a new half-transversality condition
J1/2(t) 6= 0 (see (10)). Conjecture B on sums Jη(t) in §6.2 is backed up by our
numerical results in §6.1.

Finally, in §7.1 and §7.2, we introduce and study fractional Whitney–Riemann–
Liouville integrals Iη,Ω and Whitney–Marchaud derivatives Mη,Ω (in particular a
“Whitney version” of Abel’s remark) which support our conjectures on ΨΩ

φ (η, z)

and Ψfr,Ω
φ (η, z). More precisely, as a stepping stone between the frozen function

Ψfr
φ (η, z) and ΨΩ

φ (η, z), we introduce yet another approximate “semifreddo” func-

tion ΨΩ,sf
φ (η, z) in §7.2. We expect that the approximate susceptibility functions

Ψfr
φ (η, z), Ψ

rsp
φ (η, z), and ΨΩ,sf

φ (η, z) have the same qualitative behaviour as ΨΩ
φ (η, z)

(Remark 1.2). Proposition D, proved in §5.1, shows that the approximate functions
Ψfr
φ (η, z) and Ψrsp

φ (η, z) tend to Ψφ(z) as η → 1 as formal powers series in z (i.e.,

convergence of the coefficients of each individual zk).

In the remainder of this Introduction, we flesh out the synopsis given above.

5It is natural that the half derivative of 1x>ck (x− ck)
−1/2 involves (x− ck)

−1, but we found

no good reference for the computation.
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1.1. Conjecture A on the fractional susceptibility function ΨΩ
φ (η, z). We

say that a parameter t ∈ (1, 2) is TSR if ft is Collet–Eckmann and satisfies Tsujii’s
[41, (WR)] condition, i.e.,

(4) lim
η→0+

lim inf
n→∞

1

n

∑

1≤j≤n
|fj

t (c)−c|<η

ln |f ′
t(f

j
t (c))| = 0 .

TSR is implied by polynomial recurrence and implies Benedicks–Carleson exponen-
tial recurrence (see e.g. [11, Proposition 2.2 and references], also for a topological
definition of TSR). Tsujii constructed in [41, Theorem 1 (I)] a positive measure
subset Ω ⊂ S of TSR parameters such that, setting Ωc = R \ Ω, and letting m
denote Lebesgue measure,

(5) lim
δ→0

m([t− δ, t+ δ] ∩ Ωc)

δβ
= 0 , ∀t ∈ Ω ,

for all β < 2 (in particular each t ∈ Ω is a Lebesgue density point of Ω).

The transfer operator associated to ft is defined on L1([−2, 2], dm) by setting

Ltϕ(x) =
∑

ft(y)=x

ϕ(y)

|Dft(y)|
= 1x<t

ϕ(
√
t− x) + ϕ(−√

t− x)

2
√
t− x

.

The dual of Lt fixes Lebesgue measure restricted to It := [at,−at] so that ft(It) ⊂
(It).

For t ∈ (1, 2) a fixed TSR parameter, it is convenient to extend s 7→ fs as
a Lipschitz map to the whole line as follows: choosing ǫ = ǫ(t) > 0 such that
[t− ǫ, t+ ǫ] ⊂ (1, 2), and such that6 [c2,t, c1,t] ⊂ int(∩τ∈[t−ǫ,t+ǫ]Iτ ) =: It,ǫ, set
(6)
fτ = ft if |τ − t| < ǫ , fτ = ft−ǫ for all τ < t− ǫ , and fτ = ft+ǫ for all τ > t+ ǫ .

Then, for Ω ⊂ TSR having t as a Lebesgue density point, and φ a compactly
supported C1 function, the fractional susceptibility function ΨΩ

φ (η, z) = ΨΩ
φ,t,ǫ(η, z)

for the quadratic family at t is the function of two complex variables η and z

ΨΩ
φ (η, z) =

η

2Γ(1− η)

∞∑

k=0

zk
∫ ∫

δ∈R∩(Ω−t)
φ(fkt+δ(x))

(Lt+δ − Lt)ρt(x)
|δ|1+η sgn(δ) dδdx ,

(writing dx = dm(x), dδ = dm(δ)), in the sense of formal power series in z, for
fixed η with ℜη ∈ (0, 1). (Motivation and details are given in §2.2.)

For Ω satisfying (5) for some β > 1, we define a “Whitney–Marchaud” fractional
derivative Mη,Ω in §7.2. For η ∈ (0, 1), Proposition F in §7.2 gives conditions on g
and Ω ensuring that

lim
ζ↑η

(
Γ(1− ζ)

η · Γ(η − ζ)
M ζ,Ωg(t)

)
= lim

δ→0,t+δ∈Ω

g(t+ δ)− g(t)

sgn(δ)|δ|η .

We can now state our main conjecture7:

6Recall that supp(ρt) = [c2,t, c1,t].
7The threshold for η below is 1/2; for families with criticality d the expected threshold is 1/d.
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Conjecture A. For almost every mixing8 t ∈ TSR, there exist λ̄t > 1, ǫ > 0, and
a set Ω = Ω(t) ⊂ TSR containing t and satisfying (5) for all β < 2, such that, for
any compactly supported C1 function φ, and any N ≥ 1, the following holds:

i. For any η with 0 < ℜη < 1/2, there exists a disc9 Dη of radius > 1 such
that ΨΩ

φ,t(η, z) is holomorphic in {(η, z) | 0 < ℜη < 1/2 , z ∈ Dη}.
ii. For any real 0 < η < 1/2, we have the fractional response formula

(7) ΨΩ
φ,t(η, 1) =Mη,Ω

s=t

∫
φ(x)ρs(x) dx .

iii. The power series ΨΩ
φ,t(1/2, z) defines a holomorphic function in the open

unit disc. For a generic CN function φ̃: the unit circle is a natural boundary
for this function; the limit as z ∈ (0, 1) tends to 1 of ΨΩ

φ̃,t
(1/2, z) does not

exist; the limit as z ∈ (0, 1) tends to 1 of (z − 1)ΨΩ
φ̃,t

(1/2, z), if it exists,

does not vanish.
iv. For any η with ℜη ∈ (1/2, 1) there exists a disc Dη with radius in (1/λ̄t, 1)

such that the function ΨΩ
φ (η, z) is holomorphic in {(η, z) | 0 < ℜη <

1/2 , z ∈ Dη}. For any η with ℜη ∈ (1/2, 1) and any generic CN func-

tion φ̃ we have that ΨΩ
φ̃,t

(η, z) has a singularity in the open unit disc.

v. We have limη↑1 ΨΩ
φ,t(η, z) = Ψφ,t(z) as formal power series in z (recall (2)).

For families of piecewise expanding maps, a more precise version of [iii] for the
ordinary susceptibility function Ψφ,t(z) (similar to Conjecture A+ below) was es-
tablished [9, Theorem 1], using results in [7, 10]. (We expect that other results of
[9], on the iterated logarithm law e.g., can be adapted to the quadratic family.)

Also in the piecewise expanding setting, the analogue of [i] and [ii] in Conjec-
ture A, replacing 1/2 by 1, and taking Ω to be a neighbourhood of t, has been
established in10 [3].

We explain next how the conjectured properties of ΨΩ
φ (η, z) reflect the behaviour

described in [8] of the absolutely continuous invariant measure and may also con-
tribute to resolve the paradox11 arising from comparing the results of [35] and [17]
with those of [8]. (The fractional susceptibility function being holomorphic in two
variables also raises the hope to use tools such as Hartog’s extension theorem.)

First, the η Hölder upper bounds of [8] on Ω<1/2 together with Proposition F
and [ii] in Conjecture A would imply that, if Ω<1/2 satisfies (5) for some β > 1,

lim
ζ→η

ΨΩ
φ,t(ζ, 1)

Γ(η − ζ)
=

1

Γ(1− η)
lim

δ→0,t+δ∈Ω

Rφ(t+ δ)−Rφ(t)

sgn(δ)|δ|η = 0 , ∀η ∈ (0, 1/2) .

Next, if [ii] in Conjecture A could be established at any η ∈ [1/2, 1) for which
either side of (7) is well defined, then we would have for any t at which Rφ(t) is

8Some results of [8] require polynomial recurrence. We expect that this is an artefact of the
method used there, but maybe TSR must be strengthened to polynomial recurrence.

9All discs in the present work are centered at the origin.
10The weighted Marchaud derivatives in [3] could be useful to understand the logarithmic

factors appearing in [8].
11The “averaging” response studied in [44, §3] and [45, (16)] does not resolve the paradox, see

Appendix C.
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Ω-Whitney 1/2 differentiable (Definition 7.4, Proposition F in §7.2)

(8) lim
ζ↑1/2

ΨΩ
φ,t(ζ, 1)

Γ(1/2− ζ)
=

1

Γ(1/2)
lim

δ→0,t+δ∈Ω

Rφ(t+ δ)−Rφ(t)

sgn(δ)|δ|1/2 .

(If t ∈ MT, [8] furnishes upper and lower bounds on (Rφ(t) −Rφ(t+ δn))/|δn|1/2,
for suitable sequences δn → 0, but the existence of the limit in the right-hand side
of (8) is not known.)

If the last claim of [iii] in Conjecture A holds we also expect that, for Ω satisfying
Tsujii’s condition (5) for all β < 2, and generic φ,

(9) lim
ζ↑1/2

ΨΩ
φ,t(ζ, 1/2 + ζ)

Γ(1/2− ζ)
6= 0 , lim

η↑1/2

ΨΩ
φ,t(η, 1)

Γ(1/2− η)
6= 0 .

In view of Proposition F in §7.2, the above inequality would establish that Rφ is not
Ω-Whitney η-differentiable if η > 1/2 (Definition 7.4). In particular, the ordinary
susceptibility function (2) at z = 1 could not be interpreted as a derivative. (The
singularity of Ψt(z) in the open unit interval could then be a “scar” of the singularity
at z = 1 of ΨΩ

φ,t(η, z) for some η < 1, presumably η = 1/2.) The inequalities (9)

could be useful to determine whether t is a density point of the set Ω1/2 in (3).

Remark 1.1 (Tangential families). In view of the linear response result in [11],

replacing the quadratic family by a “tangential” family f̃τ of smooth unimodal
maps all topologically conjugated to a TSR map f̃t, we expect that, taking Ω a
small enough neighbourhood of t, claims [i] and [ii] in Conjecture A, hold, replacing
1/2 by 1, and, in addition,

lim
η↑1

ΨΩ
φ,f̃t

(η, 1) = lim
τ→t

Rφ(t)−Rφ(τ)

t− τ
.

It would be interesting, but more challenging, to investigate whether “tangential-
ity” of a family f̃t at a single point t0 implies some additional (Whitney) regularity
of the response at t0.

1.2. Fractional transversality Jη. Conjectures B and A+. It is well known
that all12 Collet–Eckmann parameters t1 are transversal (see [43, Theorem 3]) in
the sense of Tsujii [41] (see also Appendix B), i.e.

(10) J (t) :=

∞∑

j=0

∂τfτ (cj,τ )|τ=t
Df jt (c1,t)

=

∞∑

j=0

1

Df jt (c1,t)
6= 0 .

To state Conjecture A+ and the fractional transversality condition appearing in
Theorem C (see §1.3), setting sgn(x) = x

|x| for x ∈ R∗, and sgn(0) = 0, we let

(11) s0 = 1 , sk := sk,t = sgn(Dfkt (c1,t)) ∈ {−1,+1} , k ≥ 1 .

Then, we define, for t > 1 such that fkt (c) 6= c for all k ≥ 1, and η > 0,

(12) Jη(t) =
∞∑

k=0

sk,t

|Dfkt (c1,t)|η
,

whenever the sum converges absolutely, and in this case we say that t satisfies the
η-summability condition. Note that the parameter t = 2 (the full quadratic map)

12In fact all “summable” parameters, i.e. those for which J (t) is absolutely convergent, are
transversal, see [20, Cor 1.b] and [4, Cor A.4].
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satisfies J1/2(2) = 0. We expect that t = 2 is the only 1/2-summable parameter
where the fractional transversality condition J1/2(t) 6= 0 fails: This is the main
claim of Conjecture B, supported by numerics, in Section 6.

Now, if ft is Collet–Eckmann, setting ut = −ρt(0) ·
√
π/2 6= 0, we put

(13) U1/2(z) = U1/2,t(z) := ut ·
∞∑

k=0

sk

zk
√
|Dfkt (c1)|

.

The function U1/2(z) is holomorphic outside of the disc of radius 1/
√
λc, with

U1/2,t(1) 6= 0 if and only if J1/2(t) 6= 0. We shall also need the power series

(14) U+
1/2(z) = U+

1/2,t(z) := ut ·
∞∑

k=0

1

zk
√
|Dfkt (c1)|

.

The function U+
1/2(z) is holomorphic outside of the disc of radius 1/

√
λc, with

J+
1/2(t) :=

∞∑

k=0

1√
Dfkt (c1,t)|

=
U+
1/2,t(1)

ut
6= 0 .

Next, following [9] (where this function was denoted σφ) we set, for φ ∈ C0,

Σφ(z) = Σφ,t(z) :=
∞∑

ℓ=1

φ(cℓ,t)z
ℓ−1 .(15)

(Σφ(z) is holomorphic in the open unit disc. If t ∈ MT, then Σφ(z) is rational.)
Recall that if φ : R → C is C0, compactly supported, and C1 at y ∈ R, the

Hilbert transform of φ at y is defined by the Cauchy principal value (see also §2.1)

(16) (Hφ)(y) := 1

π
p.v.

∫
φ(x)

y − x
dx .

Then, for φ a C1 function, we define a formal power series

ΣH
φ (z) = ΣH

φ,t(z) :=

∞∑

ℓ=1

sℓ,t · H(1Itφ)(cℓ,t)z
ℓ−1 .(17)

Finally, for r > 0, q > 1, and a bounded sequence ψ̃t(ℓ) of functions in the Sobolev
space Hr

q [−2, 2] = {ϕ | 1[−2,2] · ϕ ∈ Hr
q (R)}, we introduce the formal power series

Σψ̃t

t (z) =

∞∑

ℓ=1

sℓ,t · ψ̃t(ℓ)zℓ−1 .(18)

We can now state the announced complements to [iii] in Conjecture A:

Conjecture A+. For t, Ω, and φ as in Conjecture A, we have

ΨΩ
φ,t(1/2, z) = U1/2,t(z)Σφ,t(z) +WΩ

φ,1/2,t(z) + VΩ
φ,1/2,t(z) ,

with VΩ
φ,1/2,t(z) holomorphic in an open annulus A containing S1. Moreover, there

exist r > 0, q > 1, and functions ψ̃t(ℓ) ∈ Hr
q [−2, 2], with

∫
It
ψ̃t(ℓ) dm = 0, such

that

WΩ
φ,1/2,t(z) = U+

1/2,t(z)
[
ΣH
φ,t(z) +

∞∑

k=0

zk
∫
(φ ◦ fkt ) · Σψ̃t

t (z) dm
]
.
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Finally, Σψ̃t

t (z), and, for generic φ̃ ∈ CN (any N ≥ 1) the functions Σφ̃,t(z) and

ΣH
φ̃,t

(z) are holomorphic in the open unit disc and have a natural boundary on S1.

Remark 1.2 (Approximate Susceptibility Functions). We expect that claims [i], [iii],
and [iv] (but not [ii]) of Conjecture A, as well as the claims of Conjecture A+, hold
for the three approximate fractional susceptibility functions Ψfr

φ (η, z), Ψ
rsp
φ (η, z),

and ΨΩ,sf
φ (η, z), keeping the same functions U1/2, U+

1/2, Σφ, Σ
H
φ , and Σψ̃, and re-

placing WΩ,reg
φ,1/2 (z) and VΩ

φ,1/2(z) by suitable W∗
φ,1/2(z) and V∗

φ,1/2(z), for ∗ = fr,

rsp, and (Ω, sf), respectively. Claim [v] for the approximate fractional susceptibil-
ity functions Ψfr

φ (η, z) and Ψrsp
φ (η, z) is the content of Proposition D.

1.3. Frozen and response susceptibilities: Theorem C and Proposition D.
We move to the rigorous results. To keep this “proof of concept” paper short,
we will focus on the countable subset MT ⊂ S of Misiurewicz–Thurston (MT)
parameters. This toy model setting allows us to present new ideas with the least
possible technicalities. In addition, the “paradox” discussed above occurs at MT
parameters [8].

We shall mostly study here an approximate fractional susceptibility function,
the frozen fractional susceptibility function (Definition (2.2))

Ψfr
φ (η, z) = Ψfr

φ,t(η, z) =

∞∑

k=0

zk
∫
(φ ◦ fkt )(x)Mη

s (Lsρt(x))|s=t dx ,

where Mη
s is the two-sided Marchaud fractional13 derivative of order η and φ is C1

and supported in [−2, 2].
Sedro [39] has recently proved item [i] of Conjecture A for Ψfr

φ (η, z) for Misi-
urewicz parameters.

Our main rigorous result, Theorem C, stated in Section 5.2, furnishes the
analogue of Conjecture A+ for Ψfr(1/2, z), considering parameters t ∈ MT. In

the MT case, the functions Σφ, Σ
H
φ and Σψ̃ are rational and the singularities of

Ψfr
φ (1/2, z) on the unit circle are simple poles. (We also expect this to hold for

ΨΩ
φ,t(1/2, z) if t ∈ MT.)

We also introduce (Definition 2.3) a response fractional susceptibility function by
taking the Marchaud derivative with respect to x

Ψrsp
φ (η, z) = Ψrsp

φ,t(η, z) =
∞∑

k=0

zk
∫

It

Mη
x (φ ◦ fkt ) · ρt dx .

The response function is related to the frozen susceptibility function (Proposi-
tion 2.5) and will be used to prove Theorem C. (See [3] for a fractional response
function in the piecewise expanding setting.)

Although their value at 1 is not expected to coincide with Mη,ΩRφ(t), we be-
lieve that Ψfr

φ (η, z) and Ψrsp
φ (η, z) share the qualitative properties of ΨΩ

φ (η, z) (Re-

mark 1.2). Finally, recalling (2), Proposition 2.5 and Lemma 2.4 imply (see §5.1):
Proposition D. As formal power series,

lim
η↑1

Ψfr
φ (η, z) = lim

η↑1
Ψrsp
φ (η, z) = Ψφ(z) .

13We recall definitions in §4.1. A good introduction to fractional derivatives is the book [26].
See also the short introduction [31] and the treatise [37].
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1.4. Whitney fractional integrals and derivatives: Abel’s remark and

the semifreddo fractional susceptibility function ΨΩ,sf
φ (η, z). In §7.1 we in-

troduce Whitney fractional integrals Iη,Ω and prove Lemma E, the analogue of
Abel’s remark for I1/2,Ω (and suitable sets Ω satisfying (5)). In §7.2, we intro-
duce Whitney–Marchaud derivatives Mη,Ω, and use them to define the semifreddo

fractional susceptibility function ΨΩ,sf
φ (η, z), a stepping-stone to the fractional sus-

ceptibility function from its frozen version. Proposition F gives conditions ensuring
limη↑1Mη,Ωg(x) = g′Ω(x), where g

′
Ω(x) is the Ω-Whitney derivative of g at x ∈ Ω,

from Definition 7.4. §7.2 also contains Proposition F on limη↑ζ
[Γ(1−η)
Γ(ζ−η) (M

η,Ωg)(x)
]
.

2. Defining fractional susceptibility functions

2.1. Preliminaries. Hilbert transform. Gamma and Beta functions. We
next record classical facts for further use. First, the definition (16) of the Hilbert

transform can be explicited as (Hφ)(y) = − 1
π limδ↓0

∫∞
δ

φ(y+u)−φ(y−u)
u du. If φ is

C1 and compactly supported then Hφ coincides with the following distributional
derivative

(Hφ)(y) = d

dy

1

π

∫
φ(x) log |y − x| dx ,

and the Cauchy principal value corresponds to integration by parts, since

d

dy

1

π

∫
φ(x) log |y − x| dx =

d

dy

1

π

∫
φ(y − u) log |u| du =

1

π

∫
φ′(x) log |y − x| dx.

Note that there exists C <∞ such that for any compact interval J

|H(1Jφ)(x)| ≤ C|J | sup |φ′| , ∀x ∈ int(J) .

Euler’s Gamma function is Γ(η) =
∫∞
0
xη−1e−x dx (recall that it has simple poles

at η = 0,−1,−2, ...). The Beta function is defined for ℜx > 0 and ℜy > 0 by

B(x, y) =

∫ 1

0

ux−1(1− u)y−1 du .

It satisfies Γ(x)Γ(y) = B(x, y)Γ(x + y). Since Γ(3/2) =
√
π/2, Γ(1) = Γ(2) = 1,

and Γ(1/2) =
√
π, we have B(1/2, 1/2) = π and B(1/2, 3/2) = π/2. Recall also

that sin(π/4) = cos(π/4) =
√
2/2.

2.2. Susceptibility functions ΨΩ
φ (η, z), Ψfr

φ (η, z), Ψrsp
φ (η, z). Proposition D.

We first motivate heuristically our definition of the fractional susceptibility function
ΨΩ
φ (η, z). The starting point is the right-hand side of (7) in [ii] from Conjecture A,

i.e. the Marchaud derivative of Rφ(t). Our first task is to rewrite

Rφ(s)−Rφ(t) =

∫
φρsdm−

∫
φρtdm

along the lines of [3]: If s belongs to a suitable subset of Ω of CE, then for every
r > 0, and q > 1 there exists κ < 1 such that for any bounded function φ supported
in [−2, 2] and any ψ ∈ Hr

q [−2, 2] with
∫
It
ψ dm = 0, there exists Cφ,ψ such that

|
∫
φLks (ψ) dm| = |

∫
(φ ◦ fks )ψ dm| ≤ Cφ,ψκ

k , ∀k ≥ 1 .
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In particular, if φ is supported in It,

(19)

∫
φ (id− Ls)−1(ψ) dm =

∞∑

k=0

∫
φLks (ψ) dm =

∞∑

k=0

∫
(φ ◦ fks )ψ dm.

If t also belongs to Ω, the fixed point property Lτρτ = ρτ for τ = s, t implies∫
φ (id− Ls)(ρs − ρt)dm =

∫
φ (Ls − Lt)ρt dm.

Since
∫
(Ls − Lt)ρt dm = 0 (using that ft([c2,t, c1,t]) = [c2,t, c1,t] ⊂ Is) if |t − s| is

small enough, we would like to multiply the factor of φ in both sides by (id−Ls)−1

to recover Rφ(s) − Rφ(t) and then attempt to implement the “recipe” in §4.1 for
the Marchaud derivative. Writing (id− zLs)−1 =

∑∞
k=0 z

kLks , and using (19), this
motivates our definition for the fractional susceptibility function:

Definition 2.1 (Ω-Whitney–Marchaud fractional susceptibility function). For t ∈
TSR and ǫ > 0 as in (6), let Ω ⊂ TSR have t as a Lebesgue density point. For
ℜη ∈ (0, 1), the (Whitney–Marchaud) fractional susceptibility function ΨΩ

φ (η, z) =

ΨΩ
φ,t,ǫ(η, z) (of the quadratic family, along Ω at t, for the observable φ ∈ C1) is the

formal power series in z

ΨΩ
φ (η, z) :=

η

2Γ(1− η)

∞∑

k=0

zk
∫ ∫

R∩(Ω−t)
φ(fkt+δ(x))·(20)

· (Lt+δ − Lt)ρt(x)
|δ|1+η sgn(δ) dδ dx .

(The choice of ǫ implies that x 7→ (Lt+δ − Lt)ρt(x) is supported in It,ǫ ⊂ It.)

The coefficient of zk in the power series (20) is a sum of improper integrals, for
δ ∈ (−∞, 0) and δ ∈ (0,∞). For each fixed k ≥ 1, every δ such that t+ δ ∈ Ω, and
every ψδ ∈ L1 (and φ) supported in It,ǫ, we have, since It,ǫ ⊂ It,

zk
∫

It

(φ ◦ fkt+δ)(x) · ψδ(x) dx =

∫

It

φ(x)zk(Lkt+δψδ)(x) dx .(21)

The presence of (id− zLt+δ)−1 in (21) is the reason we restrict the integral to good
parameters t+ δ ∈ Ω (see also Appendix C).

In the present work, we mostly study the frozen fractional susceptibility function:

Definition 2.2 (Frozen susceptibility function). Let t be a TSR parameter and
choose ǫ > 0 as in (6). For η ∈ (0, 1) the frozen susceptibility function Ψfr

φ (η, z) =

Ψfr
φ,t,ǫ(η, z) (of the quadratic family, at t for the observable φ ∈ C1) is the formal

power series14

Ψfr
φ (η, z) =

∞∑

k=0

zk
∫

It

(φ ◦ fkt )(x)Mη
s (Lsρt(x))|s=t dx ,(22)

whereMη
t is the two-sided Marchaud fractional derivative of order η, in the param-

eter t, in the sense of distributions of order one (Definition 4.1). In other words,
for fixed η, we have, as a formal power series in z,

Ψfr
φ (η, z) =

η

2Γ(1− η)

∞∑

k=0

zk
∫

It

(φ ◦ fkt )(x)

14Recalling (6), the function x 7→Mη
s (Lsρt(x))|s=t is supported in It,ǫ ⊂ It.
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· lim
ǫ→0

∫

|t|>ǫ

(
(Lt+δ − Lt)ρt

)
(x)

|δ|1+η sgn(δ) dδ dx ,

where the integral over dt is viewed as a distribution of order one.

Applying (21) to each term of (22), we find (formally)

Ψfr
φ (η, z) =

∫

It

φ (id− zLt)−1(Mη
s (Lsρt(x))|s=t) dx ,

In Section 5, we shall prove Theorem C on the frozen susceptibility function for
η = 1/2 and Misiurewicz–Thurston parameters t.

Formulas for fractional response are not as neat as for linear response, since
the usual Leibniz and chain rules are replaced by infinite expansions in the case
of fractional derivatives. (See Eq. 2.209 in Section 2.7.3 of [32] for the chain rule.
For the Leibniz formula, see §15 in [37].) However, we shall see in Proposition 2.5
that a simplification occurs for the frozen susceptibility function. This motivates
the definition of a response fractional susceptibility function:

Definition 2.3 (Response susceptibility function). For η ∈ (0, 1) and φ ∈ C1 is
compactly supported, the response susceptibility function is defined by the following
formal power series

Ψrsp
φ (η, z) :=

∞∑

k=0

zk
∫

It

Mη
x (φ ◦ fkt ) ·Xtρt dm =

∞∑

k=0

zk
∫

It

Mη
x (φ ◦ fkt ) · ρt dm.

If η ∈ (0, 1/2), then

(23) Ψrsp
φ (η, z) = −

∞∑

k=0

zk
∫
(φ ◦ fkt ) ·Mη

x

(
ρt
)
dx

follows from integration by parts for the Marchaud derivative15 [37, (6.27)]. We
will see in Lemma 5.2 that (23) in fact holds for all η ∈ (0, 1), up to taking the
Marchaud derivative of ρt in the sense of distributions.

In the limit as η → 1 the following easy lemma shows that the response suscep-
tibility function converges to the Ruelle susceptibility function:

Lemma 2.4 (Ruelle susceptibility as a limit of response susceptibilities). Fix t ∈ S
and a compactly supported φ ∈ C1, and let Ψφ(z) be Ruelle’s susceptibility function
(2). Then, as formal power series in z,

lim
η↑1

Ψrsp
φ (η, z) = Ψφ(z) .

The proof of Lemma 2.4 does not use that ft+τ (x) = ft(x) + τ .

Proof of Lemma 2.4. Apply limη→1M
ηg = g′ (e.g. [3]) to g = φ ◦ fkt ∈ C1. �

Finally, using Lemma 5.2, we give the easy proof of the following remarkable
result in §5.1 (the identity (25) greatly simplifies the proof of our main result on
the frozen susceptibility function, Theorem C, for more general smooth unimodal

maps it seems there is no way to bypass the study of M
1/2
s (Lsρt)):

15Use that φ and ρt are compactly supported while, on the one hand, we haveMη
x (φ◦f

k
t ) ∈ Lploc

for all p ≥ 1, while φ ◦ fkt ∈ Ls for all s ≥ 1, and, on the other hand, we have Mη(ρt) ∈ Lrloc for

[39] any 1 ≤ r < 2(1 + 2η)−1, while ρt ∈ Lr̃ for all 1 ≤ r̃ < 2.
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Proposition 2.5 (Relating the frozen and response susceptibility functions). For
any16 mixing t ∈ MT and η ∈ (0, 1), we have, as distributions of order one,

(24) Mη
s (Lsρt(x))|s=t = −Mη

xρt(x) +
gη(x)

Γ(1− η)
,

where gη ∈ Hr
q for some r > 0 and q > 1, with supη>ǫ1 ‖gη‖Hr

q
< ∞ for any fixed

ǫ1 > 0, and
∫
R
gη(x)dm = 0.

In addition, there exists κ < 1 and for any compactly supported φ ∈ C1, there
exists Vrsp

φ,η(z) =
∑

j≥0 vjz
j holomorphic in the disc of radius κ−1 such that

(25) Ψfr
φ (η, z)− Vrsp

φ,η(z) = Ψrsp
φ (η, z) as formal power series in z.

Finally, we have, as formal power series, limη↑1 Ψfr
φ (η, z) = Ψφ(z).

Proposition 2.5 and Lemma 2.4 imply Proposition D: both the response and
the frozen fractional susceptibility functions converge to the Ruelle susceptibility
function as η → 1. (However Ψrsp

φ and Ψfr
φ do not satisfy [ii] from Conjecture A.)

3. Half integrals of square root spikes

After recalling the definitions of Riemann–Liouville fractional integrals, we re-
visit Abel’s computation of the one-sided half-integral of a square root spike and
extend it to the two-sided half-integral. The corresponding statements, Lemma 3.1
and Lemma 3.2, will be used in Section 4 to compute Marchaud derivatives.

3.1. Riesz potentials and Riemann–Liouville fractional integrals. For any
φ ∈ L1 and for η ∈ (0, 1), the Riesz potential fractional integral is defined for
ℜη > 0, η 6= 1, 3, 5, . . . by (see [37, (5.2)–(5.3), §12.1])

(26) Iηφ(t) =
1

2Γ(η) cos(ηπ/2)

∫ ∞

−∞

φ(τ)

|t− τ |1−η dτ =
Iη+φ(t) + Iη−φ(t)

2 cos(ηπ/2)
,

where Iη± are the left- and right-sided Riemann–Liouville fractional integrals [37,
(5.2)–(5.3)] (there is a typo in the second line of [37, (5.4)])

Iη+φ(t) =
1

Γ(η)

∫ t

−∞

φ(τ)

(t− τ)1−η
dτ =

1

Γ(η)

∫ ∞

0

φ(t− y)

y1−η
dy ,

Iη−φ(t) =
1

Γ(η)

∫ ∞

t

φ(τ)

(τ − t)1−η
dτ =

1

Γ(η)

∫ ∞

0

φ(t+ y)

y1−η
dy .

If gt(x) is a function of two variables x and t, we write (Iηt gt)(x) to denote the
fractional integral acting on the parameter t and evaluated at x and t, and similarly
for the one-sided integrals Iη−,t and I

η
+,t.

Note for further use that, setting Qφ(t) = φ(−t), Taφ(t) = φ(t + a), we have

(27) Iησ ◦Q = Q ◦ Iη−σ , Iησ ◦ Ta = Ta ◦ Iησ .
The case which will interest us most is η = 1/2, that is, “half Riesz potential

integrals” or “half Riemann–Liouville integrals.” In §3.2, we recall the proof of a
key observation of Abel regarding the ordinary one-sided half-Riemann–Liouville
integral of square root spikes, and we present its two-sided version, Lemma 3.2.
(Lemma 3.2 will be a key ingredient to prove our main result in Section 5.)

16The proof shows that the proposition holds more generally, for example for mixing TSR
parameters.
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3.2. Abel’s remark: One-sided half integration of square-root spikes. In
this section, we recall a result of Abel on one-sided half integrals (Lemma 3.1) and
extend it to two-sided half integrals (Lemma 3.2). The corresponding results will
be used to prove Lemma 4.4 below about the half Marchaud derivative of a spike.

The following fact was probably first observed by Abel [1, 2] (see also [33]):

Lemma 3.1 (Abel’s remark). Fix k ≥ 1 and σ ∈ {−1,+1}. Consider the left and
right square-root spikes (in x) at ck + t

(28) φck,σ(x, t) = (|x − ck − t|)−1/21σx>σ(ck+t) , x, t ∈ R .

Then the one-sided Riemann–Liouville half integrals I
1/2
± (φck,∓) (with respect to t)

are the following Heaviside jumps (in x) at ck + t:

I
1/2
−,t (φck,+)(x, t) =

√
π · 1x>ck+t(x) , I1/2+,t (φck,−)(x, t) =

√
π · 1x<ck+t(x) .

Proof of Lemma 3.1. The half integral I
1/2,t
− of φck,+(x, t) with respect to t is

(I
1/2,t
− φck,+)(x) =

1

Γ(1/2)

∫ +∞

t

φck,+(x, τ)

(τ − t)1/2
dτ

=
1

Γ(1/2)

∫ +∞

t

(x− ck − τ)−1/21y>ck+τ (x)

(τ − t)1/2
dτ

=

{
0 if ck + t ≥ x,

1
Γ(1/2)

∫ x−ck
t

1
((τ−t)(x−ck−τ))1/2 dτ if ck + t < x .

If ck + t < x, making the substitution τ = t+ (x− ck − t)u, we get
∫ x−ck

t

1

((τ − t)(x − ck − τ))1/2
dτ =

∫ 1

0

1

(u(1− u))1/2
du = B(1/2, 1/2) .(29)

Recalling B(1/2, 1/2) = π and Γ(1/2) =
√
π, we find

(I
1/2
−,t φck,+)(x, t) =

{
0 if ck + t ≥ x ,√
π if ck + t < x .

.

The other claim follows from (27) since

φck,−(x, t) = φck,+(x, 2(x − ck)− t) = Q ◦ T2(x−ck)(φck,+)(x, t) .
Indeed, we find

I
1/2
+,t φck,−(x, t) = I

1/2
+,t ◦Q ◦ T2(x−ck)(φck,+)(x, t)

= I
1/2
−,t ◦ T2(x−ck)(φck,+)(x,−t) = I

1/2
−,t φck,+(x,−t+ 2(x− ck)) .

Finally, x > ck − t+ 2(x− ck) if and only if x < ck + t. �

Replacing the one-sided Riemann–Liouville fractional integral Iη± by the (two-
sided) Riesz potential Iη from (26), Lemma 3.1 must be replaced by the following
lemma, which includes an unbounded logarithm corresponding to the “other side.”

Lemma 3.2 (Two-sided version of Abel’s remark). For any real number Z > 1,
any integer k ≥ 1 and any x ∈ I, the one-sided Riemann–Liouville half integrals of
the Z-truncated right and left square-root spikes

(30) φck,+,Z(x, t) =
1(ck+t,ck+t+Z)(x)

(x− ck − t)1/2
, φck,−,Z(x, t) =

1(ck+t−Z,ck+t)(x)

(ck + t− x)1/2
,
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satisfy, for σ = ± and any |x− ck − t| < Z/2,
I1/2σ (φck,σ,Z)(x, t) =

σ√
π

(
− log |x− ck − t|+ logZ +GZ(σ(t− x+ ck))

)
,

where GZ(y) is analytic on |y| < Z/2, with limZ→∞ sup|y|<Z/2 |∂yGZ(y)| = 0, and

sup
Z>1

sup
|y|<Z/2

max{|GZ(y)|, |∂yGZ(y)|, |∂2yGZ(y)|} <∞ .

The elementary proof of the above crucial lemma (which will be used to prove
Lemmas 4.4 and 4.5) is given in Appendix A.

Finally, the remark below will be used several times in the sequel:

Remark 3.3 (Phase and parameter half-integrals of a spike). Since x > ck + t − u
if and only if t < x+ u− ck, we have for any 1 < Z ≤ ∞, recalling (30),

I
1/2
−,t (φck,+,Z)(x, t) = I

1/2
+,x(φck,+,Z)(x, t) , I

1/2
+,t (φck,−,Z)(x, t) = I

1/2
−,x(φck,−,Z)(x, t) ,

and for any 1 < Z <∞
I
1/2
+,t (φck,+,Z)(x, t) = I

1/2
−,x(φck,+,Z)(x, t) , I

1/2
−,t (φck,−,Z)(x, t) = I

1/2
+,x(φck,−,Z)(x, t) .

4. Marchaud derivatives applied to spikes and square roots

After recalling the definition of Marchaud derivatives Mη and extending them
as distributions in §4.1, we show in §4.2 how M1/2 acts on the singular components
(spikes and square roots) of the invariant density ρt. The lemmas in this section
will be crucial to prove Theorem C in Section 5.

4.1. One-sided and two-sided Marchaud derivatives Mη
± and Mη. Let g :

R → C be bounded and γ-Hölder. We recall that the left-sided Marchaud fractional
derivative (with lower limit a = −∞) [37, pp. 110–111, Theorem 5.9, p. 225], where
it is denoted by Dη

+, see also [16, §2.2.2.3] is defined for η ∈ (0, γ) and x ∈ R, by

(Mη
+g)(x) =

η

Γ(1− η)

∫ x

−∞

g(x)− g(y)

(x− y)1+η
dy =

η

Γ(1− η)

∫ 0

−∞

g(x)− g(x+ τ)

|τ |1+η dτ

=
η

Γ(1− η)

∫ ∞

0

g(x)− g(x− τ)

τ1+η
dτ .(31)

If g is bounded on R and differentiable17 at x, the limit as η ↑ 1 of Mη
+(g)(x) is

equal to the ordinary derivative g′(x) (see e.g. [31, §3.2] or [3]).
The integral (31) is an improper integral. In the application of this paper, g(t)

will be bounded as t → ±∞, so18 the only delicate limit is τ → 0. Concretely, we
will work with the expression (see [37, (5.59–5.60)])

(Mη
+g)(x) = lim

ǫ↑0
(Mη

+,ǫg)(x) := lim
ǫ↑0

η

Γ(1− η)

∫ ǫ

−∞

g(x)− g(x+ τ)

|τ |1+η dτ .

The right-sided Marchaud fractional derivative (with upper limit b = +∞) is
defined for η ∈ (0, 1) and x ∈ R by

Mη
−g(x) =

η

Γ(1− η)

∫ ∞

0

g(x)− g(x+ τ)

τ1+η
dτ

17If g is bounded and differentiable to the left at x, the limit as η ↑ 1 of Mη
+
(g)(x) is equal to

the left-sided derivative g′
−
(x), the notation is thus confusing.

18This is an advantage of Marchaud derivatives over Riemann–Liouville fractional derivatives.
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= lim
ǫ↓0

(Mη
−,ǫg)(x) = lim

ǫ↓0

η

Γ(1− η)

∫ ∞

ǫ

g(x)− g(x+ τ)

τ1+η
dτ .

If g is bounded on R and differentiable at x (differentiable to the right is enough),
then limη↑1M

η
−(g)(x) = −g′(x) (see e.g. [3]).

We define the two-sided Marchaud derivative by

Mηg(x) =
Mη

+g(x)−Mη
−g(x)

2
.

Note that Mηg(x) = limǫ↓0Mη
ǫ g(x) where

(32) Mη
ǫ g(x) =

η

2Γ(1− η)

∫

|τ |>ǫ

g(x+ τ)− g(x)

|τ |1+η sgn(τ) dτ .

Note for further use that, recalling Qg(t) = g(−t), Tag(t) = g(t+ a), we have

(33) Mη
σ ◦Q = Q ◦Mη

−σ , Mη
σ ◦ Ta = Ta ◦Mη

σ , σ = ± .

Therefore,

(34) Mη ◦Q = −Q ◦Mη , Mη ◦ Ta = Ta ◦Mη .

We shall sometimes need to consider Mηg (if g is not Hölder, for example) in
the sense of distributions (of order one):

Definition 4.1 (Marchaud derivative in the sense of distributions of order one). For
η ∈ (0, 1) and a measurable function g such that the integral G(y) =

∫ y
−∞ g(u) du

is well-defined and almost everywhere finite, with19

lim
ǫ→0

Mη
ǫ G(x) ∈ L1

loc ,

we define the two-sided Marchaud derivative of g in the sense of distributions of
order one by setting, for any compactly supported C1 function ψ,

∫
(Mηg)(x)ψ(x) dx := −

∫ [
lim
ǫ→0

Mη
ǫ G(x)

]
ψ′(x) dx .(35)

The one-sided Marchaud derivatives Mη
− and Mη

+ in the sense of distributions are

defined analogously (for Mη
−, it is convenient to set G(y) = −

∫∞
y
g(u) du.).

Note that (34) and (33) extend to the setting of Definition 4.1.

If gt(x) is a function of two variables x and t, then (Mη
t gt)(x) or (M

η
s gs)(x)|s=t

denote the Marchaud derivative acting on the parameter t and evaluated at x and
t, and similarly for the one-sided derivatives Mη

−,t and M
η
+,t.

Remark 4.2 (Marchaud in the sense of distributions). If g ∈ C1 is compactly supp-
ported then the definition (35) is in fact an identity which can be deduced from
Fubini, Lebesgue dominated convergence, and integration by parts (for C1 com-
pactly supported ψ). Let us write the computation in the one-sided case:
∫
(Mη

+g)(x)ψ(x) dx =

∫ [
lim
ǫ↑0

η

Γ(1− η)

∫ ǫ

−∞

g(x) − g(x+ τ)

|τ |1+η dτ

]
ψ(x) dx

=
η

Γ(1− η)

∫ 0

−∞

∫
g(x)− g(x+ τ)

|τ |1+η ψ(x) dxdτ

19One could weaken this condition, up to exchanging the limit and the derivative in (35). We
shall not need this more general notion.
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= − η

Γ(1− η)

∫ 0

−∞

∫
G(x) −G(x+ τ)

|τ |1+η ψ′(x) dxdτ

= −
∫ [

lim
ǫ↑0

η

Γ(1− η)

∫ ǫ

−∞

G(x) −G(x+ τ)

|τ |1+η dτ

]
ψ′(x) dx .

Remark 4.3 (Marchaud and Riemann–Liouville). If g is C1 and and |g′(τ)| =
O(|τ |η−1−ǫ) for some ǫ > 0 as τ → −∞ ([37, pp. 109–110]) then the left-sided
Marchaud derivative of g coincides with the left-sided Riemann–Liouville deriva-
tive with lower limit a = −∞ of g

(Mη
+g)(t) =

d

dt
I1−η+ (g)(t) =

1

Γ(1− η)

d

dt

∫ t

−∞

g(τ)

(t− τ)η
dτ .

Similarly, the right-sided Marchaud derivative of g coincides with the right-sided
Riemann–Liouville derivative with upper limit a = ∞ of g

(Mη
−g)(t) = − d

dt
I1−η− (g)(t) =

−1

Γ(1− η)

d

dt

∫ ∞

t

g(τ)

(τ − t)η
dτ .

The remark above will be used in the proof of Lemma 5.2. (Note that Lemma 4.4
is a generalisation of this remark, for g a one-sided spike and η = 1/2.)

4.2. The half derivative M1/2 of spikes, square roots, and C1 functions.
The key fact we shall use is the following lemma about Marchaud derivatives (in
the sense (35) of distributions) of spikes and truncated spikes, for Z > 1,

φx0,σ(x) =
1σx>σx0√
|x− x0|

, φx0,σ,Z(x) = 10<σ(x−x0)<Z · φx0,σ(x) .

Lemma 4.4 (Half Marchaud derivatives of a spike). For x0 ∈ R and σ = ±, the
following holds: The one-sided half Marchaud derivatives satisfy, as distributions
on continuous compactly supported functions,

M
1/2
+ (φx0,+)(x) =

√
π · δx0

, M
1/2
− (φx0,−)(x) =

√
π · δx0

.

The two-sided half Marchaud derivative satisfies, as a distribution on C1 compactly
supported functions,

M1/2(φx0,σ)(x) =
σ

2
√
π
·
(
πδx0

− 1

x− x0

)
.

Finally, for any Z > 1, the two-sided half Marchaud derivative satisfies, as a
distribution on C1 functions supported in [x0 −Z/2, x0 + Z/2],

M1/2(φx0,σ,Z)(x) =
σ

2
√
π
·
(
πδx0

− 1

x− x0
+ΦZ(σ(x0 − x))

)
,

where ΦZ(y) is analytic on |y| < Z/2, with limZ→∞ sup|y|<Z/2 |ΦZ(y)| = 0, and

sup
Z>1

sup
|y|<Z/2

max{|ΦZ(y)|, |∂yΦZ(y)|} <∞ .

In view of the expansion (50) for the invariant density, we also need Marchaud
derivatives of square roots and truncated square roots, defined for Z > 1 by,

φ̄x0,+,Z(x) = 1x0<x<x0+Z · √x− x0 , φ̄x0,−,Z(x) = 1x0−Z<x<x0
· √x0 − x .
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Lemma 4.5 (Half Marchaud derivatives of a square root). Let x0 ∈ R. The one-
sided Marchaud derivatives of square roots satisfy, for σ = ±,

M1/2
σ

(
1σx>σx0

(
√
|x− x0|)

)
=

√
π

2
1σx>σx0

(x) .

For Z > 1, the two-sided Marchaud derivatives of truncated square roots satisfy

M1/2(φ̄x0,σ,Z)(x) =
σ

2
√
π

(
π1σx>σx0

(x)− log |x− x0|+ logZ
)
+ Φ̄Z(σ(x0 − x)) ,

where Φ̄Z(y) is analytic on |y| < Z/2, with limZ→∞ sup|y|<Z/2 |Φ̄Z(y)| = 0, and

sup
Z>1

sup
|y|<Z/2

max{|Φ̄Z(y)|, |∂yΦ̄Z(y)|} <∞ .

Lemma 4.6 (Action of Marchaud derivatives on C1 functions). For any η ∈ (0, 1)
and any C1 function g : R → R with supR |g′| < ∞, the two-sided Marchaud
derivative Mη(g) is (1 − η)-Hölder.

Proof of Lemma 4.4. To show the claim on M
1/2
+ (φx0,+)(x), we must show that,

for any C1 function ψ, compactly supported on a bounded interval J , we have

(36)

∫

J

ψ(x)M
1/2
+

(
1x>x0√
x− x0

)
dx =

√
πψ(x0) .

We shall use two facts. On the one hand, the distributional derivative of the
Heaviside 1x>y is the Dirac mass at y, in particular, for any compactly supported
C1 function ψ, and any bounded (interval [a, b] containing y, we have

(37)

∫ b

y

ψ′(x) dt =

∫ b

a

1x>y(x)ψ
′(x) dt = −ψ(y) + ψ(b) .

On the other hand, in view of Remark 3.3, Lemma 3.1 gives

(38) I
1/2
+,x(φx0,+)(x) =

1

Γ(1/2)

∫ 0

−∞

φx0,+(x+ τ)

|τ |1/2 dτ =
√
π1x>x0

(x) .

We now move on to prove (36). We have, recalling (35) (in other words, integrating
by parts with respect to x using Fubini, before taking the limit ǫ→ 0),

∫

J

ψ(x)M
1/2
+,xφx0,+(x) dx

= − 1

2
√
π

∫

J

ψ′(x) lim
ǫ↑0

∫ ǫ

−∞

φ̃x0,+(x) − φ̃x0,+(x+ τ)

|τ |3/2 dτ dx ,

where φ̃x0,+(x) = 0 if x0 > x and, otherwise,

φ̃x0,+(x) =

∫ x

−∞
φx0,+(y) dy =

∫ x

x0

1√
y − x0

dy = 2
√
x− x0 .(39)

Next, for x0 − x < ǫ < 0, integrating by parts, we find,
∫ ǫ

−∞

φ̃x0,+(x) − φ̃x0,+(x+ τ)

2|τ |3/2 dτ

= 2

[∫ x0−x

−∞

√
x− x0
2|τ |3/2 dτ +

∫ ǫ

x0−x

√
x− x0 −

√
x+ τ − x0

2|τ |3/2 dτ

]

= 2

[√
x− x0√
|τ |

∣∣∣∣
τ=x0−x

τ=−∞
+

∫ ǫ

x0−x

1

2
√
x+ τ − x0

1

|τ |1/2 dτ
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+

√
x− x0 −

√
x− x0 + ǫ

|ǫ|1/2 − 1

]

= 2

[
1 +

∫ ǫ

−∞

1x+τ>x0
(x)

2
√
x+ τ − x0

1

|τ |1/2 dτ +

√
x− x0 −

√
x− x0 + ǫ

|ǫ|1/2 − 1

]

=

∫ ǫ

−∞

1x+τ>x0
(x)√

x+ τ − x0

1

|τ |1/2 dτ + 2

√
x− x0 −

√
x− x0 + ǫ

|ǫ|1/2

=

∫ ǫ

−∞

φx0,+(x+ τ)

|τ |1/2 dτ + 2

√
x− x0 −

√
x− x0 + ǫ

|ǫ|1/2 .(40)

Note that limǫ↑0
√
x−x0−

√
x−x0+ǫ

|ǫ|1/2 = 0 for any fixed x > x0. Using first (38), and

then (37) (recalling that ψ vanishes at the endpoints of J), we have,

− 1√
π

∫

J

ψ′(x) lim
ǫ↑0

∫ ǫ

−∞

φx0,+(x+ τ)

|τ |1/2 dτ dx = −
∫

J

ψ′(x)I1/2+ (φx0,+)(x) dx

= − π√
π

∫

J∩[x0,∞)

ψ′(x) dx =
√
π · ψ(x0) ,

which concludes20 the proof of (36) for M
1/2
+ (φx0,+).

For the claim21 on M
1/2
− (φx0,−), we use (33) and

(41) φx0,+(x) = φx0,−(2x0 − x) .

Next, we show the claim on the two-sided Marchaud derivative M1/2(φx0,+)(x).

We will apply Lemma 3.2. We first claim that M
1/2
− (φx0,+ − φx0,+,Z)(x) is C

1 (in
fact, C∞) on x < x0 + Z. Indeed

2Γ(1/2) ·M1/2
− (φx0,+ − φx0,+,Z)(x)

=

∫ ∞

0

1x>x0+Z · φx0,+(x) − 1x+τ>x0+Z · φx0,+(x + τ)

τ3/2
dτ .

If x < x0 + Z, we find

M
1/2
− (φx0,+ − φx0,+,Z)(x) = − 1

2Γ(1/2)

∫ ∞

x0−x+Z

φx0,+(x+ τ)

τ3/2
dτ

= − 1

2Γ(1/2)

∫ ∞

x0−x+Z

1√
x+ τ − x0

1

τ3/2
dτ =: G̃Z(x− x0) .(42)

Clearly, if y < Z/2,

|G̃Z(y)| =
∣∣∣∣

1

2Γ(1/2)

∫ ∞

−y+Z

1

(y + τ)1/2 · τ3/2 dτ

∣∣∣∣

≤
∣∣∣∣

1

2
√
π

1

(Z/2)1/2
∫ ∞

−y+Z
τ−3/2 dτ

∣∣∣∣ =
1√
π

1

(Z/2)1/2
1√Z − y

≤ 2√
π

1

Z .(43)

We next focus on M
1/2
− (φx0,+,Z)(x). Just like in the proof of (36), taking a C1

function ψ compactly supported in an interval J , we integrate by parts:
∫

J

ψ(x)M
1/2
− (φx0,+,Z)(x) dx

20In particular we have shown thatM
1/2
+

(φx0,+) = dI
1/2
+

(φx0,+), as expected, see Remark 4.3.
21In particular, M

1/2
−

(φx0,−) = −dI
1/2
−

(φx0,−), as expected, see Remark 4.3.
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= − 1

2Γ(1/2)

∫

J

ψ′(x) lim
ǫ↓0

∫ ∞

ǫ

φ̃x0,Z(x)− φ̃x0,Z(x+ τ)

τ3/2
dτ dx ,

where φ̃x0,Z(x) = 0 if x < x0 and, otherwise,

φ̃x0,Z(x) =

∫ x

−∞
φx0,+,Z(y) dy =

∫ x

−∞

1x0+Z>y>x0√
y − x0

dy

=

∫ min(x,x0+Z)

x0

1√
y − x0

dy =

{
2
√
Z if x > x0 + Z ,

2
√
x− x0 if x < x0 + Z .

(44)

Next, integrating by parts again, we find for x ∈ (x0, x0+Z), that, for any 0 < ǫ <
x0 − x+ Z,

−
∫ ∞

ǫ

φ̃x0,Z(x) − φ̃x0,Z(x+ τ)

2τ3/2
dτ

= −2

∫ x0−x+Z

ǫ

√
x− x0 −

√
x+ τ − x0

2τ3/2
dτ − 2

∫ ∞

x0−x+Z

√
x− x0 −

√
Z

2τ3/2
dτ

= 2

[∫ x0−x+Z

ǫ

1

2
√
x+ τ − x0

1

τ1/2
dτ +

√
x− x0 −

√
Z√

x0 − x+ Z −
√
x− x0 −

√
x− x0 + ǫ√
ǫ

−
√
x− x0 −

√
Z√

x0 − x+ Z

]

=

∫ x0−x+Z

ǫ

φx0,+(x+ τ)

τ1/2
dτ − 2

√
x− x0 −

√
x− x0 + ǫ√
ǫ

.

As ǫ ↓ 0, the right hand-side above tends to
∫∞
0

φx0,+,Z (x+τ)

τ1/2 dτ for any fixed x < x0.
If x < x0, we find for any 0 < ǫ < x0 − x,
∫ ∞

ǫ

φ̃x0,Z(x)− φ̃x0,Z(x+ τ)

2τ3/2
dτ

= 2

∫ x0−x+Z

x0−x

√
x+ τ − x0
2τ3/2

dτ + 2

∫ ∞

x0−x+Z

√
Z

2τ3/2
dτ

= 2

[∫ x0−x+Z

x0−x

1

2
√
x+ τ − x0

1

τ1/2
dτ −

√
Z√

x0 − x+ Z +

√
Z√

x0 − x+ Z

]

=

∫ x0−x+Z

0

φx0,+(x+ τ)

τ1/2
dτ =

∫ ∞

0

φx0,+,Z(x+ τ)

τ1/2
dτ .(45)

So, recalling the definition of I
1/2
− , for any x < x0 + Z, we have

− 1

2Γ(1/2)
lim
ǫ↓0

∫ ∞

ǫ

φ̃x0,Z(x) − φ̃x0,Z(x+ τ)

τ3/2
dτ = I

1/2
− (φx0,+,Z)(x) .

Summarising, and recalling (42), we have shown that if J ∩ [x0+Z/2,∞) = ∅, then
∫

J

ψ(x)M
1/2
+ (φx0,+)(x) dx = −

∫

J

ψ′(x)I1/2+ (φx0,+)(x) dx =
√
πψ(x0) ,(46)

and22∫

J

ψ(x)M
1/2
− (φx0,+)(x) dx =

∫

J

ψ(x)G̃Z (x − x0) dx+

∫

J

ψ(x)M
1/2
− (φx0,+,Z)(x) dx

22In particular, M
1/2
−

(φx0,+,Z) = −dI
1/2
−

(φx0,+,Z), as expected.
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=

∫

J

ψ(x)G̃Z (x − x0) dx+

∫

J

ψ′(x)I1/2− (φx0,+,Z)(x) dx .

Next, by Remark 3.3, Lemmas 3.1 and 3.2 give for x0 −Z/2 < x < x0 + Z/2 that

I
1/2
−,x(φx0,+,Z)(x) = I

1/2
+,t (φx0+t,+,Z)(x)|t=0

=
1√
π

(
− log |x− x0|+ logZ +GZ(x0 − x)

)

=
1√
π

(
− log |x− x0|+ logZ +GZ(x0 − x)

)
,(47)

where y 7→ GZ(y) is analytic, with

(48) lim
Z→∞

sup
|y|<Z/2

|∂yGZ(y)| = 0 , sup
Z>1

sup
|y|<Z/2

max(|∂yGZ(y)|, |∂2yGZ(y)|) <∞ ,

Recalling that ψ is C1 and vanishes at the endpoints of J , we have shown that

2

∫

J

ψ(x)M1/2(φx0,+)(x) dx =

∫

J

ψ(x)
(
M

1/2
+ (φx0,+(x)−M

1/2
− (φx0,+(x))

)
dx

=
√
πψ(x0)−

∫

J

ψ(x)G̃Z (x− x0) dx

−
∫

J

ψ′(x)√
π

[
− log |x− x0|+ logZ +GZ(x0 − x)

]
dx

=
√
πψ(x0) +

∫

J

ψ(x)
[
−G̃Z(x − x0) +

∂xGZ(x0 − x)√
π

]
dx(49)

− 1√
π

∫

J

ψ(x)

x− x0
dx ,

if Z is large enough (depending only on x0 and J). Since the left-hand side above
is independent of Z, the function

G(x − x0) := −G̃Z(x− x0) + ∂xGZ(x0 − x)/
√
π

does not depend on Z. By (43) and the first claim of (48), we get G(y) = 0. This

establishes the claim onM
1/2
− (φx0,+) and the two-sided half derivativeM1/2(φx0,+).

The claim on M1/2(φx0,−)(x) then follows from (34) and (41).
Finally, the claims on truncated spikes φx0,σ,Z follow from (42) and (49) com-

bined with the fact that if σ(x − x0) < Z then M
1/2
σ (φx0,σ − φx0,σ,Z)(x) = 0. �

Proof of Lemma 4.5. In view of (38), to show the claim onM
1/2
+ (1x>x0

(
√
x− x0)),

it is enough to check that for any continuous ψ vanishing at the endpoints of J ,

1

2
√
π

∫

J

ψ(x) lim
ǫ↑0

∫ ǫ

−∞

1x>x0
(
√
x− x0)− 1x+τ>x0

(
√
x+ τ − x0)

|τ |3/2 dτ dx

=
1

2

∫

J

ψ(x)I
1/2
+ (φx0,+)(x) dx .

The above follows from (40) and (39). The claim on M
1/2
− (1x<x0

(
√
x0 − x)) then

follows immediately from (33) and (41).
For the two-sided half derivative of truncated square roots, we note that

M1/2
σ (φ̄x0,σ − φ̄x0,σ,Z)(x) = 0 if σ(x− x0) < Z .

The claim on M1/2(φ̄x0,σ,Z) then follows from(45), (46), and (47). �
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Proof of Lemma 4.6. Since η ∈ (0, 1), for any h ∈ R, we have

|Mηg(x+ h)−Mηg(x)|

≤ η

2Γ(1− η)
lim
ǫ↓0

∫

|τ |>ǫ

|g(x+ h+ τ) − g(x+ h)− g(x+ τ) + g(x)|
|τ |1+η dτ

≤ η

Γ(1− η)
sup |g′|

(
lim
ǫ↓0

∫ |h|

ǫ

τ

τ1+η
dτ +

∫ ∞

|h|

|h|
τ1+η

dτ

)

=
η

Γ(1− η)
sup |g′|

( |h|1−η
1− η

+
|h|1−η
η

)
.

�

5. Rigorous results on fractional susceptibility functions

Before stating Theorem C in §5.2 and proving it in §5.3, we recall an expansion
for the invariant density ρt due to Ruelle in §5.1, and prove some of its consequences.

5.1. Ruelle’s formula for ρt. Fractional integration by parts. Exponential
bounds. Proof of Proposition 2.5. Let f(x) = ft(x) = t − x2 for t ∈ MT, let
ck = ck,t and recall the sequence sk = sk,t from (11). The starting point for the
proof below of our main Theorem C is the expansion given by Ruelle [36, Theorem
9, Remark 16A] (in the slightly more general analytic Misiurewicz setting) for the
invariant density ρt of ft, supported in [c2, c1]:

ρt(x) = ψ0(x) +

∞∑

k=1

C
(0)
k

1w0<sk−1(x−ck)<0√
|x− ck|

(50)

+

∞∑

k=1

C
(1)
k · 1w1<sk−1(x−ck)<0 ·

√
|x− ck| ,

where23 ψ0 is a C1 function, w1 < 0, w0 < 0, and where (for some Ut 6= 0)

C
(0)
k =

ρt(0)

|Dfk−1
t (c1)|1/2

, |C(1)
k | ≤ Ut

|Dfk−1
t (c1)|3/2

, ∀k ≥ 1 .

Since t ∈ MT, we have ck+P = ck for k ≥ L. Note also that, if DfPt (cL) > 0,
then the spikes and square roots along the postcritical orbit are all one-sided. If
DfPt (cL) < 0 then the spikes and square roots along the periodic part of the
postcrititical orbit are all two-sided.

Remark 5.1. For more general TSR parameters, one could use [11, Prop 2.7] instead
of (50). (To obtain an expansion involving spikes and square roots in the TSR
setting, one could upgrade the results of [11], showing that if ft is smooth enough
then the smooth component of ρt belongs to W

r
1 for large enough r > 2.)

In the remainder of this section, we show three consequences of (50).
First, we show that the integration by parts formula (23) holds for all η ∈ (0, 1)

(this will be used to prove Proposition 2.5 which implies Proposition D):

23The cutoff is slightly different in Ruelle [36, Theorem 9, Remark 16A], who observes that
“other choices can be useful.”
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Lemma 5.2 (Fractional integration by parts in the response susceptibility). Let
t ∈ MT. For any η ∈ (0, 1) and any compactly supported φ ∈ C1, we have, as
formal power series,

∞∑

k=0

zk
∫
Mη
x (φ ◦ fkt ) · ρt dx = −

∞∑

k=0

zk
∫
(φ ◦ fkt ) ·Mη

x

(
ρt
)
dx .

(By definition, the left-hand side above is just Ψrsp
φ (η, z).)

Proof. Fix η ∈ (0, 1). It suffices to show that, for any compactly supported ψ ∈ C1,
we have ∫

Mη
x (ψ)(x) · ρt(x) dx = −

∫
ψ(x) ·Mη

x (ρt)(x) dx ,

where Mη
x (ρt) is understood in the sense of distributions (of order one).

Since ψ is C1 and compactly supported, we have

(51) 2Mη
x (ψ)(x) = ∂x((I

1−η
+ + I1−η− )ψ)(x) = (I1−η+ + I1−η− )ψ′(x) .

(Use Remark 4.3 for the first equality and the definition of I1−η± for the second.)

Next, using the expansion (50) for g(x) := ρt(x), we find that G(y) :=
∫ y
−∞ g(u) du

is the sum of a C1 function with a (finite) sum of one- or two-sided truncated square
roots along the postcritical orbit (see (44)). Thus (recalling (32))

lim
ǫ→0

Mη
ǫ G(x) =MηG(x) ∈ L1

loc .

The above claim is clear if η < 1/2. For η = 1/2, it follows from Lemma 4.5. Finally,

for η ∈ (1/2, 1), we may decompose Mη
± = M

η−1/2
± ◦M1/2

± , using the semigroup

property ([19, Property 2.4], for24 m = 1 and α = η− 1/2, noting that G ∈ L1 and

I
3/2−η
± (G) ∈ AC since 3/2− η > 1/2).
Now, on the one hand, by definition, we have

2

∫
ψ(x)(Mηg)(x) dx = −2

∫
ψ′(x) ·MηG(x) dx

=

∫
ψ′(x)

[ η

Γ(1− η)

∫
G(x + τ)−G(x)

|τ |1+η sgn(τ) dτ
]
dx

=

∫
ψ′(x)

[ η

Γ(1− η)

∫ ∫ x+τ
x g(u) du

|τ |1+η sgn(τ) dτ
]
dx ,(52)

where (52) can be rewritten, integrating by parts in τ , as
∫
ψ′(x)

1

Γ(1 − η)

∫
g(x+ τ)

|τ |η dτ dx .

On the other hand, (51) followed by fractional integration by parts [37, (5.16)] gives

2

∫
Mη
x (ψ)(x) · g(x) dx =

∫
(I1−η+ + I1−η− )(ψ′)(x) · g(x) dx

=

∫
ψ′(x) · (I1−η+ + I1−η− )(g)(x) dx

=

∫
ψ′(x) · 1

Γ(1− η)

∫
g(x+ τ)

|τ |η dτ dx .

�

24The reference to Lemma 2.4 there should be replaced by Lemma 2.5.
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Next, we use25 the expansion (50) to get the following exponential bounds, useful
to prove Theorem C:

Lemma 5.3 (Action of the transfer operator on Sobolev spaces Hr
q for r > 0). Let

t ∈ MT be a mixing parameter. Let r > 0, q > 1. There exist C < ∞ and κ < 1
such that, for any26 ψ ∈ Hr

q [−2, 2] and any bounded ϕ supported in [−2, 2]

|
∫
ϕ(f jt (x))ψ(x) dx −

∫
ϕ(x) dµt ·

∫

It

ψ dx| ≤ C‖ϕ‖L∞‖ψ‖Hr
q
κj , ∀j ≥ 0 .

Lemma 5.3 applies to the Heaviside function ψ = 1x>y .

Proof of Lemma 5.3. Since q > 1 and we are in a one-dimensional setting, the
Sobolev embeddings imply that, for any r̃ > 2 (we may choose r̃ < 2 + r), there

exists C̃ such that for any compactly supported g ∈ H r̃
q

‖g‖C1 ≤ C̃‖g‖Hr̃
q
.

Since r > 0, using mollification, we can approach 1[−2,2]ψ by C1 functions ψǫ with

‖ψǫ‖C1 ≤ C̃‖ψǫ‖Hr̃
q
≤ C̃0

‖ψ‖Hr
q

ǫ2
, ‖ψ − ψǫ‖Lq[−2,2] ≤ C̃1ǫ

r‖1[−2,2]ψ‖Hr
q
, ∀ǫ > 0 .

Note that (1[c2,c1]ψǫ)/ρt ∈ BV , with BV norm bounded by C0‖ψǫ‖C1[c2,c1], because

1[c2,c1]/ρt ∈ BV . (To check this, use that27 inf [c2,c1] ρt > 0 and that ρt is the sum

of a C1 function together with finitely many square roots spikes and square roots,
by (50), and consider separately each maximal interval bounded by postcritical
points.)

Since it is easy to find C0 <∞ and κ < 1 (independent of ϕ, ψ) such that
∫

R\It
|(ϕ ◦ f jt )ψ| dm ≤ C0κ

j‖ϕ‖L∞‖ψ‖Lq , ∀j ≥ 1 ,

and since we can write
∫ at
c1

(ϕ ◦ f jt )ψ dm =
∫ c2
−at(ϕ ◦ f j−1

t ) (ψ ◦ f−1)|(f−1)′| dm, and
∫ c2

−at
(ϕ ◦ f jt )ψ dm =

∫ c2

−at
ϕ(f

j−[j/2]
t (x))

ψ(f−[j/2](x)

(f [j/2])′(f−[j/2](x))
dx

+

j−1∑

ℓ=[j/2]

∫ c3

c2

ϕ(f ℓ(x))
ψ(f ℓ−j(x))

|(f j−ℓ)′(f ℓ−j(x))|dx ,

(f−k above denotes (fk|∩k
j=1

f−j [−at,c2])
−1), which gives the limiting contribution∫

ϕ(x) dµt ·
∫
It\[c2,c1] ψ dx, the lemma follows from three facts. First,

∫

[c2,c1]

(ϕ ◦ f jt )ψǫ dx =

∫

[c2,c1]

(ϕ ◦ f jt )
ψǫ
ρt

dµt .

Second, there exist θ < 1, C1 < ∞ (independent of ϕ, ψǫ, see [18, Theorem 1.1],
by the principle of uniform boundedness, C1 does not depend on ψǫ) such that

|
∫ c1

c2

(ϕ ◦ f jt )
ψǫ
ρt

dµt −
∫
ϕdµt

∫ c1

c2

ψǫ dm| ≤ C1‖ϕ‖L1

∥∥∥∥
1[c2,c1]ψǫ

ρt

∥∥∥∥
BV

θj , ∀j ≥ 1 .

25It would probably be possible to apply [47, Thm 2.II.b)] instead.
26If supp(ψ) ⊂ It, the first term is

∫
ϕ(x)Ljt (ψ(x)) dx, thus the name of the lemma.

27See e.g. [46, Theorem 2c)], or, in the MT case [30].
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Third,

max
{
|
∫
ϕdµt

∫

It

(ψǫ−ψ) dm|, |
∫

It

(ϕ◦f jt )(ψ−ψǫ) dm|
}
≤ sup |ϕ|‖ψ−ψǫ‖Lq[−2,2] .

To conclude, for each j choose ǫ = θj/(r+2), so that θj

ǫ2 = ǫr = θjr/(r+2) =: κj . �

We can now provide the proof of Proposition 2.5:

Proof of Proposition 2.5. Setting Rt(y) =
∫ y
−10

ρt(x) dx, it is easy to see (using e.g

(50), or, in the TSR case, [11]) that 1[−1,1] ·Mη
xRt(x) belongs to L

q for any η ∈ (0, 1)

and any 1 ≤ q < 2. So supη∈(0,1)

∫ 1

−1 |Mη
xRt(x)| dx <∞. In particular, Mη

x (ρt)(x)

is well defined in the sense of distributions of order one28 uniformly in η ∈ (0, 1).
Next, since ft+τ (x) = ft(x) + τ for the quadratic family, we find, recalling (6),

(Lt+τρt)(x) = (Ltρt)(x − τ) = ρt(x− τ) , ∀x , ∀|τ | < ǫ0 ,

(Lt+τρt)(x) = (Ltρt)(x ∓ ǫ0) = ρt(x∓ ǫ0) , ∀x , if ± τ > ǫ0 .

This implies that for any η ∈ (0, 1) and any x, we have

Γ(1 − η)
(
Mη
t (Lsρt(x))|s=t +Mη

xρt(x)
)
=

=
η

2

∫

|τ |>ǫ0

ρt(x− sgn(τ)ǫ0)− ρt(x + τ)

|τ |1+η sgn(τ) dτ

=
1

2

ρt(x − ǫ0)− ρt(x + ǫ0)

ǫη0
− η

2

∫

|τ |>ǫ0

ρt(x+ τ)

|τ |1+η sgn(τ) dτ .

The above defines a function gη ∈ Hr
q for some r > 0 and q > 1 for any η > 0,

uniformly in η > ǫ1, for any fixed ǫ1 > 0, and such that (24) holds. Clearly∫
R
gη(x)dx = 0. Since Mη

xρt(x) is a distribution of order one, Mη
s (Lsρt(x))|s=t

(which is compactly supported) is also a distribution of order one.
We next establish the relation between the frozen and the response susceptibility

functions: On the one hand, recalling (22) and using (24), we have

Ψfr
φ (η, z) =

∞∑

k=0

zk
∫

It

φ(fkt (x))

(
gη(x)

Γ(1− η)
−Mη

xρt(x)

)
dx .

Lemma 5.3 holds for the term involving gη. On the other hand, Lemma 5.2 gives

Ψrsp
φ (η, z) = −

∞∑

k=0

zk
∫

It

φ(fkt (x))M
η
x ρt(x) dx .

The last claim of Proposition 2.5 follows from Lemma 2.4. �

5.2. Theorem C on Ψfr
φ (1/2, z) at MT parameters. For a CE parameter t,

recall λc > 1 from (1), U1/2(z), U+
1/2(z) from (13), (14), and Σφ(z), Σ

H
φ (z), and

Σψ̃t (z) from (15), (17), and (18). Generalising (11), we put, sk,1 = sk,1,t = sk,t and

(53) sk,ℓ := sk,ℓ,t = sgn(Dfkt (cℓ)) , k ≥ 1 , ℓ ≥ 1 .

The following elementary lemma is proved at the end of §5.3 (see [9, Remark 1.2]
for the case of piecewise expanding maps):

28This was already established in Lemma 5.2.
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Lemma 5.4. Let t ∈ MT with fPt (cL) = cL. Then U1/2,t(z) is rational, with poles

at the P th roots of sgn(DfP (cL))|DfP (cL)|−1/2, and U1/2,t(1) = utJ1/2(t), and

U+
1/2,t(z) is rational, with poles at the P th roots of |DfP (cL)|−1/2, and U+

1/2,t(1) =

utJ +
1/2(t).

For φ ∈ C1, the function Σφ,t(z) is rational, with possible simple poles at the P th
roots of unity, while ΣH

φ,t(z) is rational, with possible simple poles at the P th roots

of sgn(DfP (cL)). For any r > 0, q > 1 and any sequence ψ̃(ℓ) ∈ Hr
q [−2, 2] such

that ψ̃(ℓ) = ψ̃(ℓ + p) for ℓ ≥ L, the function z 7→ Σψ̃t (z) ∈ Hr
q [−2, 2] is rational,

with possible simple poles at the P th roots of sgn(DfP (cL)).
Set Pt(z) = (z − 1) · Σφ,t(z) and P+

t (z) = (z − 1) · ΣH
φ,t(z). Then we have

Pt(1) = 1
P

∑L+P−1
ℓ=L φ(cℓ).

If29 sgn(DfP (cL)) = +1, then we have that P+
t (1) =

1
P ·∑L+P−1

ℓ=L sℓH(1Itφ)(cℓ),

and, setting P ψ̃t (z) = (z − 1) · Σψ̃t (z), that P ψ̃t (1) = 1
P

∑L+P−1
ℓ=L sℓψ̃ℓ.

Our main theorem is proved in §5.3 (it is reminiscent30 of [10, 9, 36]):

Theorem C (Frozen susceptibility function t ∈ MT). Let t ∈ MT be mixing

with fPt (cL) = cL. There exist κ < 1 and a sequence ψ̃t(ℓ) ∈ Hr
q [−2, 2] with

ψ̃t(ℓ) = ψ̃(ℓ + p) for ℓ ≥ L, and
∫
It
ψ̃ℓ dm = 0 for all ℓ, such that the following

holds: For any compactly supported φ in C1,

Ψfr
φ,t(1/2, z) = U1/2,t(z)Σφ,t(z) +Wφ,1/2,t(z) + Vφ,1/2,t(z) ,

where Vφ,1/2,t(z) is holomorphic in the annulus {λ−1/2
c < |z| < κ−1}, while,

Wφ,1/2,t(z) = U+
1/2,t(z)Σ

H
φ,t(z) +

∞∑

ℓ=0

∫
(φ ◦ f ℓt ) · Σψ̃t

t (z) dm.

If sgn(DfP (cL)) = −1, then Ψfr
φ (1/2, z) has a simple pole at z = 1, with residue

(54) ut ·
J1/2(t)

P

L+P−1∑

k=L

φ(ck) .

If sgn(DfP (cL)) = 1, then there31 exists ψ̃∗
t ∈ (L∞[−2, 2])∗ with

∫
It
ψ∗
t dm = 0,

such that the residue of the simple pole at z = 1 of Ψfr
φ (1/2, z)/ut is equal to

J1/2(t)

P
·
L+P−1∑

k=L

φ(ck) +
J+
1/2(t)

P
·
(L+P−1∑

ℓ=L

sℓ · H(1Itφ)(cℓ) +

∫
φ · ψ̃∗

t dm

)
.(55)

The vanishing of (55) is a codimension-one condition on φ. If J1,2(t) 6= 0 the
vanishing of (54) is a codimension-one condition on φ. Thus, in view of Lemma 5.4,
Theorem C establishes the analogue of Conjecture A[iii] and Conjecture A+ for the
frozen susceptibility function at MT parameters.

29If sgn(DfP (cL)) = −1, then, clearly, P+
t (1) = Pψ̃t (1) = 0.

30With respect to [9] the term Wφ,1/2(z) and the presence of the Hilbert transform are new.
31The notation

∫
φ ψ̃∗ dm represents the action of ψ̃∗ ∈ (L∞[−2, 2])∗ on φ ∈ L∞[−2, 2]. The

formula defining ψ̃∗
t is given in (62)–(63), it does not depend on φ.
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Remark 5.5. The proof of Theorem C shows that the statements also hold for
Ψrsp
φ (1/2, z), up to replacing the function Vφ,1/2(z) by Vφ,1/2(z)− Vrsp

φ,1/2(z) (using

Proposition 2.5).

Besides Ruelle’s expansion (50), the proof of Theorem C in §5.3 will be based
on Proposition 2.5, Lemmas 4.4–4.6 and Lemma 5.3 above, and Lemma 5.6 below.

Lemma 5.6 (Action of the transfer operator on poles). For ℓ ≥ 2 with cℓ−1 =
cℓ−1,t 6= 0, set

χ̃ℓ(x) = χ̃ℓ,t(x) =
s1,ℓ−1 · 1x≥c1

x− cℓ
+

1x<c1
cℓ−1

√
c1 − x

+
1x<c1
cℓ−1

∫ x
cℓ

1
2
√
c1−udu

x− cℓ
.

Then, for any k ≥ 1 such that ck 6= 0, we have, setting χk = χk,t = (x− ck,t)
−1,

Ltχk = s1,k χk+1 + χ̃k+1 .

If t ∈ MT, there exist r > 0 and q > 1 such that χ̃ℓ ∈ Hr
q [−2, 2] for each ℓ ≥ 2.

Proof of Lemma 5.6. For any x < t = c1 and k ≥ 1, using c2k = c1 − ck+1 twice in
the second equality of the third line, we find, inspired by the beginning of the proof
of [43, Theorem 2],

Ltχk(x) =
1

2
√
c1 − x

(
1√

c1 − x− ck
+

1

−√
c1 − x− ck

)

=
1

ck
√
c1 − x

−c2k
(c2k − c1 + x)

=

√
c1 − x

ck

−c2k
(c1 − x)(c2k − c1 + x)

= −
√
c1 − x

ck

c1 − ck+1

(c1 − x)(x − ck+1)

= −
√
c1 − x

ck

(
1

x− ck+1
− 1

x− c1

)
= −

√
c1 − x

ck
(χk+1(x) − χ1(x)) .

Now, −√
c1 − ck+1 = ck if ck < 0 that is, s1,k = 1, while −√

c1 − ck+1 = −ck if
ck > 0 that is, s1,k = −1. Thus, using a Taylor series at ck+1, we find

−√
c1 − x = s1,k · ck +

∫ x

ck+1

1

2
√
c1 − u

du , ∀x < c1 .

Therefore

Ltχk(x) = s1,k · 1x<c1 · χk+1(x) +
1x<c1

ck
√
c1 − x

+
1x<c1
ck

∫ x
ck+1

1
2
√
c1−udu

x− ck+1
.

In other words, setting

χ̃k+1(x) =
s1,k · 1x≥c1
x− ck+1

+
1x<c1

ck
√
c1 − x

+
1x<c1
ck

∫ x
ck+1

1
2
√
c1−udu

x− ck+1
,

we have proved

Ltχk(x) = s1,k · χk+1(x) + χ̃k+1(x) .

It is easy to find r > 0 and q > 1 such that all χ̃ℓ ∈ Hr
q [−2, 2] if t ∈ MT. �

Remark 5.7. We introduce notation useful for the proof of Theorem C. Let Yt be
the L+ P − 1-dimensional vector space generated by the functions

(56) χk = χk,t = (x − ck,t)
−1 , k = 1, . . . L+ P − 1 .
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We write χ(~Y ) =
∑L+P−1
k=1 Yk · χk for ~Y = (Yk) ∈ CL+P−1. Then in view of

Lemma 5.6 it is natural to introduce the finite L+P − 1×L+P − 1 matrix S = St

acting on Yt, with coefficients

Sk,j = s1,jδk,j+1 + s1,L+P−1δk,Lδj,L+P−1 .

The eigenvalue zero of St has algebraic multiplicity L−1 but geometric multiplicity

equal to one. Since sgn(DfPt (cL)) =
∏L+P−1
k=L s1,k = sP,L = sgn(DfPt (cL)), the

nonzero eigenvalues of St consist in the P th roots of sgn(DfPt (cL)), they are simple.

5.3. Proof of the main result (Theorem C).

Proof of Theorem C. We already observed that x 7→ M
1/2
s (Lsρt(x))|s=t is sup-

ported in It,ǫ ⊂ It (recall Footnote 14), while the support of µt is contained in It.

Thus, for each compactly supported C1 function φ̃ such that φ̃(x) =
∫
φdµt =: φ∗

for all x in It, and each sequence of C1 functions υk with υk(x) ≡ 1 if |x| ≤ k and
υk(x) ≡ 0 if |x| ≥ 2k, Proposition 2.5 gives

∫
φ̃(x)M

1/2
t (Ltρt(x))dx = φ∗ ·

∫

It

M
1/2
t (Ltρt(x))dx

= φ∗ · lim
k→∞

∫

R

υk(x)M
1/2
t (Ltρt(x))dx

= φ∗ · lim
k→∞

(∫

R

υk(x)M
1/2
x ρt(x)dx +

∫

R

υk(x)
g1/2(x)

Γ(1/2)
dx
)
= 0 .

(To show limk→∞
∫
R
υk(x)M

1/2
x ρt(x)dx = 0, recall Definition 4.1, note that υ′k(x) =

0 if |x| > 2k, and G(y) :=
∫ y
−∞ ρt(x) dx = 0 if y < c2 while G(y) = 1 if y > c1, and

use that the Marchaud derivative of any constant function vanishes.) Therefore,
∫
φ(f jt (x))M

1/2
t (Ltρt(x))dx =

∫

It

(φ − φ̃)(f jt (x))M
1/2
t (Ltρt(x))dx , ∀j ≥ 0 .

From now on, replacing φ by φ − φ̃ if necessary, we may thus assume that φ is
compactly supported, C1 and has zero average with respect to dµt. (This will allow
us to exploit exponential decay of correlations from Lemma 5.3.)

Our starting point is then that Ψfr
φ (1/2, z) = Ψrsp

φ (1/2, z) + Vrsp
φ,1/2(z), with

Vrsp
φ,1/2(z), holomorphic in the disc of radius κ−1 > 1, from Proposition 2.5. By

Lemma 5.2,

Ψrsp
φ (1/2, z) = −

∞∑

j=0

zj
∫

It

φ(f jt (x))M
1/2
x (ρt)(x) dx .

Therefore, using the expansion (50) for ρt(x), and recalling ut = −
√
π
2 ρt(0), Lem-

mas 4.4–4.6 imply that there exist r > 0, q > 1, and a function g̃ ∈ Hr
q [−2, 2] such

that Ψrsp
φ (1/2, z) can be written as (using the32 Hilbert transform (16))

∞∑

j=0

zj
[∫

φ(f jt (x)) g̃(x)dx +
∑

k≥1

ut · sk−1√
|Dfk−1(c1)|

(
φ(ck+j) +H(1It · (φ ◦ f jt ))(ck)

)]
.

32The improper integral is well-defined and finite, since φ is C1 and [−at, c1] contains a neigh-
bourhood of each cℓ.
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(Indeed, the Heaviside function and the logarithm from Lemma 4.5, the 1/2-Hölder
contribution from Lemma 4.6, and — using the MT assumption — the functions
1supp(φ◦fj

t )\It
(x−ck)−1 have uniformly bounded Hr

q [−2, 2] norms, for r > 0, q > 1.)

Next, recalling Proposition 2.5, set

Vregφ,1/2(z) = Vrsp
φ,1/2(z) +

∞∑

j=0

zj
∫
φ(f jt (x)) g̃(x)dx .

Since
∫
φdµt = 0, Lemma 5.3 gives κ < 1, independent of φ, such that the function

Vregφ,1/2(z) is holomorphic in the disc of radius κ−1 > 1.

The rest of the proof is devoted to the study of the singular term of the suscep-
tibility function, that is the formal power series

Ψsingφ (1/2, z) :=

∞∑

j=0

zj
∑

k≥1

ut · sk−1√
|Dfk−1(c1)|

(
φ(ck+j) +H(1It · (φ ◦ f jt ))(ck)

)
.

We first concentrate on the contribution of φ(ck+j), which can be rewritten as

Ψsing,0φ (1/2, z) := ut

∞∑

ℓ=1

φ(cℓ)

ℓ−1∑

j=0

zj
sℓ−j−1√

|Df ℓ−j−1(c1)|
.(57)

Following the arguments of [9, App. B, Remark 1.2] (see also [7, §5] and the proof
of [10, Prop 4.6]), and recalling that our choices imply X(cℓ) ≡ 1 ≡ v(cℓ) for all ℓ,
we introduce for every ℓ ≥ 1 the formal Laurent series (recalling (53))

α1/2(cℓ, z) = −
∞∑

k=1

z−k
sk,ℓ√

|Dfk(cℓ)|
.

Our assumptions imply that α1/2(cℓ, ·) is rational and that it is holomorphic in

|z| > 1/
√
λc. Recalling the definition (13) of U1/2, the coefficient of φ(cℓ) in (57) is

utz
ℓ−1

ℓ−1∑

j=0

z−(ℓ−1−j) sℓ−1−j√
|Df ℓ−1−j(c1)|

= zℓ−1

(
U1/2(z)− ut

sℓ−1

zℓ−1
√
Df ℓ−1(c1)

∞∑

k=1

sk,ℓ

zk
√
|Dfk(cℓ)|

)
.(58)

Thus, we find

Ψsing,0φ (1/2, z) = U1/2(z)

∞∑

ℓ=1

φ(cℓ)z
ℓ−1 − ut

∞∑

ℓ=1

φ(cℓ)sℓ−1α1/2(cℓ, z)√
|Df ℓ−1(c1)|

.

Next, our MT assumption implies that the function

Vsing,0φ,1/2 (z) := −ut
∞∑

ℓ=1

φ(cℓ)sℓ−1α1/2(cℓ, z)√
|Df ℓ−1(c1)|

is rational, and that it is holomorphic in the domain {|z| > 1/
√
λc}.

It remains to consider the contribution of H(1It · (φ ◦ f jt ))(ck), that is,

Ψsing,1φ (1/2, z) := −ut
π

∞∑

j=0

zj
∑

k≥1

sk−1√
|Dfk−1(c1)|

∫

It

(φ ◦ f jt )χk dm,

with χk from (56).
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Using the notation introduced in Remark (5.7), and introducing Mt : Yt → Hr
q

by

Mt(~Y ) = YL+P−1χ̃L +

L+P−2∑

k=1

Ykχ̃k+1 ,

Lemma 5.6 allows us to write, setting ~Yk = (δj,k)j=1,...L+P−1 ∈ {0, 1}L+P−1,

∞∑

j=0

zjLjt (χk) =
∞∑

j=0

zjSjt (~Yk) +

∞∑

ℓ=0

zℓLℓtMt

∞∑

n=0

znSnt (~Yk)

=:
∞∑

j=0

zjAj(~Yk) +
∞∑

j=0

zjBj(~Yk) .(59)

Since
∫
It
(φ ◦ f jt )χk dm =

∫
It
φLjt (χk) dm, using Aj and Bj from (59), we write

Ψsing,1φ (1/2, z) as

(60) −ut
π

∞∑

j=0

zj
∑

k≥1

sk−1√
|Dfk−1(c1)|

∫

It

φ(x)

[
Aj(~Yk) +Bj(~Yk)

]
dm.

We start with the terms for the Aj . Applying Lemma 5.6 (j times), we find,

− 1

π

∫

It

φ(x)Aj(~Yk) dm = − 1

π
sj,k

∫

It

φ(x)χk+j(x) dx .

Therefore, since sk−1 · sj,k = sk+j , proceeding as for (58), but with the signs
removed, the contribution of the Aj terms in (60) give

−ut
π

∞∑

j=0

zj
∑

k≥1

1√
|Dfk−1(c1)|

∫

It

φ(x) · sk+jχk+j(x)dx

= U+
1/2(z)Σ

H
φ (z) + Vsing,1φ,1/2 (z) ,

with Vsing,1φ,1/2 (z) rational and holomorphic outside of the disc of radius
√
λ
−1

c .

Next, we analyse the contribution of the Bj in (60). Using sk−1 · sn,k = sk+n,
proceeding as for (58) with the signs removed, using

∫
φdµt = 0, and setting

~Υt := −(ut/π) ·
∑
k≥1

sk−1√
|Dfk−1(c1)|

~Yk, we find33

−ut
π

∞∑

j=0

∞∑

k=1

sk−1 z
j

√
|Dfk−1(c1)|

∫

It

φ ·Bj(~Yk) dm

=

∞∑

ℓ=0

zℓ
∫

It

φ · LℓtMt

∞∑

n=0

znSnt (~Υt) dm

=

∞∑

ℓ=0

zℓ
∫

It

(φ ◦ f ℓt )Mt

∞∑

n=0

znSnt (
~Υt) dm

= −ut
π

·
∞∑

ℓ=0

zℓ
∫

It

(φ ◦ f ℓt ) ·
∞∑

n=0

zn
∞∑

k=1

sk−1sn,k√
|Dfk−1(c1)|

Mt(χk+n) dm(61)

33We identify χk = χ(~Yk) with ~Yk in (61).
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= − 1

π
·

∞∑

ℓ=0

zℓ
∫

It

(φ ◦ f ℓt )
(
U+
1/2(z)Σ

ψ̃t

t (z) + Vsing,21/2 (z)
)
dm,

with

(62) ψ̃t(ℓ) = χ̃ℓ+1 − ρt

∫

It

χ̃ℓ+1dm,

and where z 7→ Vsing,21/2 (z) ∈ Hr
q [−2, 2] is rational, and it is holomorphic outside of

the disc of radius
√
λ
−1

c . Hence, using again
∫
φdµt = 0 and Lemma 5.3,

Vφ,1/2(z) := Vregφ,1/2(z) + Vsing,0φ,1/2 (z) + Vsing,1φ,1/2 (z)− 1

π
·

∞∑

ℓ=0

zℓ
∫

It

(φ ◦ f ℓt )Vsing,21/2 (z) dm

is holomorphic in the annulus {λ−1/2
c < |z| < κ−1}.

Finally, the formulas (54) and (55) for the residues follow from Lemma 5.4. In
particular, since

∫
φdµt = 0, using Lemma 5.3, we may take

(63)

∫
φ ψ̃∗

t dm := − 1

π

∞∑

j=0

zj
∫

It

(φ ◦ f jt )
L+P−1∑

ℓ=L

sℓ ψ̃t(ℓ) dm.

�

Proof of Lemma 5.4. If t ∈ MT, then U1/2(z) is the rational function

U1/2(z) =
ut
zL−1

(L−1∑

ℓ=0

sℓz
L−1−ℓ

√
|Df ℓt (c1)|

+

L+P−1∑

ℓ=L

sℓz
L−1−ℓ

√
|Df ℓt (c1)|

∞∑

k=0

skp,ℓ

zkp
√
|Dfkpt (cL)|

)

=
ut
zL−1

(L−1∑

ℓ=0

sℓz
L−1−ℓ

√
|Df ℓt (c1)|

+

L+P−1∑

ℓ=L

sℓz
L+P−1−ℓ

√
|Df ℓt (c1)|

1

zP − sP,L√
|DfP

t (cL)|

)
.

Similarly, U+
1/2(z) is the rational function

U+
1/2(z) =

ut
zL−1

(L−1∑

ℓ=0

zL−1−ℓ
√
|Df ℓt (c1)|

+

L+P−1∑

ℓ=L

zL+P−1−ℓ
√
|Df ℓt (c1)|

1

zP − 1√
|DfP

t (cL)|

)
.

We show that Σφ(z) and ΣH
φ (z) are rational, with possible poles at the P th roots

of unity for Σφ(z), and at the P th roots of sgn(DfP (cL) for Σ
H
φ (z). Indeed,

Σφ(z) =

∞∑

ℓ=1

φ(cℓ)z
ℓ−1 =

L−1∑

ℓ=1

φ(cℓ)z
ℓ−1 +

zL−1

1− zP

P−1∑

ℓ=0

φ(cL+ℓ)z
ℓ .

The residue of Σφ(z) at 1 is thus 1
P

∑L+P−1
ℓ=L φ(cℓ). If sgn(Df

P (cL)) = +1 then

ΣH
φ (z) =

L−1∑

ℓ=1

sℓH(1Itφ)(cℓ)z
ℓ−1 +

zL−1

1− zP

P−1∑

ℓ=0

sL+ℓH(1Itφ)(cL+ℓ)z
ℓ ,

in which case the residue at 1 is 1
P

∑L+P−1
ℓ=L sℓH(1Itφ)(cℓ). If sgn(Df

P (cL)) = −1

ΣH
φ (z) =

L−1∑

ℓ=1

sℓH(1Itφ)(cℓ)z
ℓ−1 +

zL−1

1 + zP

P−1∑

ℓ=0

sL+ℓH(1Itφ)(cL+ℓ)z
ℓ .
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Figure 1. J1(t) for Misiurewicz–Thurston (MT) parameters t.

The same argument gives that Σψ̃t (z) is rational, with possible poles at the P th
roots of of sgn(DfP (cL)), and, when sgn(DfP (cL)) = 1, its residue at z = 1 is

equal to 1
P

∑L+P−1
ℓ=L sℓ ψ̃ℓ. �

6. One-half transversality: Numerics and Conjecture B

Sums Jη(t) of the form (12) with η = 1/2 play an important role in our
study of the fractional response in the quadratic family at a Misiurewicz–Thurston
(MT) parameter t. In particular the “one half transversality condition” condition
J1/2(t) 6= 0 is essential in Theorem C.

The sums (12) already appeared in the literature: For η = 1, we recover the
Tsujii transversality condition J1(t) 6= 0 (see Tsujii [41]), which is satisfied for every
MT parameter in the quadratic family (and in a far larger class of parameters,
see Footnote 12). Figure 1 illustrates the graph of J1(t) over hundreds of MT
parameters. (We explain in §6.1, how these MT parameters were obtained.)

For η = 1/2, the set of 1/2-summable parameters is important in the study of
unimodal maps. Nowicki and van Strien [29] proved (in particular) that quadratic
maps that satisfy the 1/2-summability condition have an absolutely continuous in-
variant probability measure. It turns out that, in the complement of the hyperbolic
parameters, almost every parameter satisfies the 1/2-summability condition (see
Lyubich [23], and also Martens and Nowicki [24, §4]).

However, the condition J1/2(t) 6= 0 does not seem to have appeared in the
literature. The reader may wonder when this condition holds. We do not have a
definitive answer for this. As observed after the statement of Theorem C, it is easy
to see that J1/2(2) = 0. This first came as a surprise to us, but it is in fact natural,
as we explain next.

We already noticed that the piecewise expanding and piecewise analytic map Ft
conjugated to ft via the change of variable Λ = Λt given by its invariant densities

(see (73)) (DtFt)
k(Λ(c1,t)±) = sk

√
|(Dfkt )(c1,t)| we see that J1/2(t) 6= 0 is just

the ordinary transversality assumption [10] of Ft for the vector field v ≡ 1 on
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[Ft(Λ(c1,t)),Λ(c1,t)]. Noting that F2 is just the full tent map with slopes ±2, the
fact that J1/2(t) = 0 for the full quadratic map mirrors the fact that the family of

tent maps F̃t is tangential
34 so that F2 is tangential for the vector field v ≡ 1.

Note also that the measure of maximal entropy of f2 coincides with the absolutely
continuous measure. See [28, §8, §9] for classical necessary conditions for this
property to hold. More recently, based on [12, Theorem 2], Dobbs and Mihalache
observed [13, Fact 5.2] that the measure of maximal entropy of an S-unimodal map
f with positive entropy is absolutely continuous if and only if f is35 pre-Chebyshev.
The ([13, Proposition 5.1] only pre-Chebyshev quadratic map is f2 : x→ 2− x2.

The parameter t = 2 corresponds to the simplest combinatorics 0 7→ c1 7→ c2 7→
c2. One can check that J1/2(t) 6= 0 holds for the parameter t corresponding to the
next simplest Misiurewicz–Thurston combinatorics (beware that it is not mixing)
0 7→ c1 7→ c2 7→ c3 7→ c3. Indeed, this parameter is t = 1.54368 . . ., and we have
ft(c3) = c3 with λ1 = f ′

t(c1) = −3.0874 . . ., λ2 = Dft(c2) = −Dft(c3) = 1.6786 . . .,
so that a geometric series gives

J 1/2(t) = 1− 1√
|λ1|

− 1√
|λ1λ2|

1

1 + 1/
√
λ2

= 0.182959 . . . .

6.1. Numerics. We have performed numerical experiments to investigate J1/2(t)
for hundreds of Misiurewicz–Thurston parameters: We calculate 858 MT parame-
ters t, with high accuracy, and we compute the corresponding sums J1/2(t).

The algorithm consists into finding approximate values for Misiurewicz–Thurston
parameters in the real line, and then use the Milnor–Thurston transformation to
obtain such parameters with higher precision. Indeed, given a real Misiurewicz–
Thurston parameter t = c1 such that

fk+jc1 (0) = fkc1(0)

for some k ≥ 1 and j ≥ 1, choose a point x = (x1, x2, . . . , xk+j−1) ∈ Rk+j−1 such
that xi · f ic1(0) > 0 for every 1 ≤ i < j + k. Next, define

T (x1, x2, . . . , xk+j−1) = (y1, y2, . . . , yk+j−1)

where fx1
(yi) = xi+1 for i < k + j − 2, while fx1

(yk+j−1) = xk, and yi · f ic1(0) > 0
for every 0 < i < j + k. Then Milnor and Thurston [27, Proof of Lemma 13.4]
proved that T ℓ(x) converges to (c1, fc1(c1), . . . , f

k+j−1
c1 (c1)) exponentially fast.

We explain next why some of the Misiurewicz–Thurston parameters found by
this algorithm are not renormalizable, and hence mixing: The critical point of
a Misiurewicz–Thurston map f is not periodic, and there is L > 0 such that
fL(0) is periodic. Taking L minimal with this property, let P ≥ 1 be such that
fP (fL(0)) = fL(0). Suppose that P is a prime number, P 6= 2, the multiplier
DfP (fL(0)) is positive, and f is renormalizable. Then the period of the first (and
only) renormalization of f is P ,

F = fP : [|fL(0)|,−|fL(0)|] → [−|fL(0)|, |fL(0)|]

34The topological entropy is the logarithm of the slope and thus constant, so there are no
bifurcations. It is illuminating to construct explicitly the corresponding topological conjugacy.

35A unimodal map f is called pre-Chebyshev if f is exactly m times renormalisable, for some
m ≥ 0, each renormalisation being of period two, and, in addition, if J is the restrictive interval

for the mth renormalisation, f2
m
|J : J → J is smoothly conjugate on J to x 7→ 1−2|x| on (−1, 1).
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Figure 2. J1/2(t) for MT parameters t.

is the first (and only) renormalization of f , and, additionally, F (fL(0)) = fL(0),
while F (0) is not a fixed point of F , and F 2(0) = fL(0). In particular f2P (fL(0)) =
fL(0). This implies 2P ≥ L > P . Our numerical experiment give Misiurewicz–
Thurston maps f for which P is a prime number, P 6= 2, the multiplier DfP (fL(0))
is positive, but 2P ≥ L > P does not hold, so that f is not renormalizable.
Moreover the numerical experiment gives J1/2(f) 6= 0.

The resulting graph for J1/2(t) can be seen in Figure 2. (To be compared with
Figure 1 for the graph of the Tsujii transversality condition J1(t).) The value of
J1/2(t) seems to be always strictly positive except at t = 2, where it vanishes.
However, J1/2(t) appears to be close to zero (see Figure 3 for a close-up) at a
few values of t. The “almost vanishing of J1/2(t)” phenomenon seems to occur
when the real Misiurewicz–Thurston parameter t is such that ft is renormalisable
with deepest (i.e., last) renormalisation has36 topological entropy log 2 (that is,
there is a periodic point −x∗ ∈ R with period n ≥ 2 such that the intervals
fkt [−x∗, x∗], for k = 0, . . . , n − 1, are pairwise disjoint, except possibly at their
boundaries, with fnt [−x∗, x∗] ⊂ [−x∗, x∗], and the unimodal map g : [−1, 1] →
[−1, 1] defined by g(x) = x−1

∗ fnt (x∗x) satisfies g(−1) = g(1) = −1 and g(0) =
x∗). Moreover it seems that this deepest renormalisation is close to a quadratic
polynomial on the interval of renormalisation. (This last property happens when
the so called “complex bounds” are large enough. This occurs for instance in
the first renormalisation of parameters very close to t = 2, see e.g. Douady and
Hubbard [15, Proof of Thm 5].)

Note that if the deepest renormalisation is conjugated to the Ulam–von Neumann
map, then [8] does not give any lower bound for the regularity of the SRB measure.

6.2. Conjecture B on one-half-transversality for the quadratic family.
Our numerical experiments support and motivate the following conjecture.

Conjecture B. For the quadratic family ft, we have:

i. For every real MT parameter t 6= 2, we have J1/2(t) > 0.
ii. In fact, inf {J1/2(t) | t a real MT parameter, t 6= 2} = 0.

36In particular, this deepest renormalisation is topologically conjugated to f2.
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Figure 3. Close-up of J1/2(t) for MT parameters t.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1.4  1.5  1.6  1.7  1.8  1.9  2

Figure 4. J per
1/2 (t) for periodic parameters t.

iii. More generally, if t 6= 2 satisfies 1/2-summability, then J1/2(t) > 0.
iv. The parameter η = 1/2 is a critical exponent in the following sense: If

η > 1/2 then Jη(t) > 0 for every real MT parameter t. If η ∈ (0, 1/2) there
are infinitely many real parameters t such that Jη(t) < 0.

G. Levin suggested that we perform experiments also for parameters such that
fPt (c) = c for some P ≥ 1. For such t, we set

J per
η (t) =

P−1∑

k=0

sgn((Dfkt (c1)))

|Dfkt (c1)|η
.

In view of the resulting data, which is presented in Figure 4, we expect that claim
[i] of Conjecture B also holds for all real periodic parameters.

Finally, note that if t > 2 then c1 > 2 and, for all k ≥ 1, we have fk+1
t (c1) >

fkt (c1) > 2, so that |Dfk+1
t (c1)| > |Dfkt (c1)| > 4, while sgn((Dfk+1

t (c1)) =
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−sgn((Dfkt (c1))). Thus, the sum (12) converges absolutely for any η > 0 and

Jη(t) > 1− 1

4η
> 0 , ∀t > 2 , ∀η > 0 .

7. Whitney fractional integrals Iη,Ω and derivatives Mη,Ω

7.1. Abel’s remark for Whitney fractional integrals I1/2,Ω (Lemma E).
For Ω ⊂ (1, 2) satisfying (5) and t ∈ Ω, it is natural to consider the one-sided
Ω-(Whitney–)Riemann–Liouville fractional integrals of φ ∈ L1 on Ω defined by

(Iη,Ω+ φ)(t) =
1

Γ(η)

∫

Ω∩(−∞,t]

φ(τ)

(t− τ)1−η
dτ ,

(Iη,Ω− φ)(t) =
1

Γ(η)

∫

Ω∩[t,∞)

φ(τ)

(τ − t)1−η
dτ ,

and the two-sided corresponding object defined by

Iη,Ωφ(t) =
1

2Γ(η) cos(ηπ/2)

∫

Ω

φ(τ)

|t− τ |1−η dτ .

Recalling the spikes φck,± from (28), we give an analogue of Lemma 3.1.

Lemma E (Abel’s remark on Ω). Let Ω ⊂ (1, 2) be a compact positive Lebesgue
measure set satisfying Tsujii’s property (5) for all β < 2. For any k ≥ 1, the
one-sided Ω-Riemann–Liouville half integrals of the square root spikes satisfy

I
1/2,Ω
−,t (φck,+)(x, t) = AΩ

ck,+
(x, t) +

√
π · 1x>ck+t(x) ,

I
1/2,Ω
+,t (φck,−)(x, t) = AΩ

ck,−(x, t) +
√
π · 1x<ck+t(x) ,

where AΩ
ck,±(x, t) ≤ 0 are defined by AΩ

ck,σ(x, t) = 0 if σx ≤ σ(ck + t), and

AΩ
ck,σ

(x, t) = − 1

Γ(1/2)

∫ 1

0

1Ωc(t+ σ(x − (ck + t))u)

u1/2(1− u)1/2
du if σx > σ(ck + t) .

In addition, x 7→ AΩ
ck,σ(x, t) is η Hölder, for σ = ± and for all η < 1/2.

We refrain from stating the Ω version of the two-sided Lemma 3.2. (Since (69)
cannot be used, the proof must be more “hands on.” See also Remark 7.1.)

Proof of Lemma E. We handle φck,+(x, t). The case of φck,−(x, t) is symmetric.

The Whitney half integral I
1/2,Ω
−,t of the spike φck,+(x, t) with respect to t is

(I
1/2,Ω
−,t φck,+)(x, t) =

1

Γ(1/2)

∫

τ∈[t,∞]∩Ω

φck,+(x, τ)

(τ − t)1/2
dτ

=
1

Γ(1/2)

∫

τ∈[t,∞]∩Ω

1y>ck+τ (x)

(x − ck − τ)1/2(τ − t)1/2
dτ

=




0 if ck + t ≥ x,

1
Γ(1/2)

∫ x−ck
t

(
1Ω(τ)

(τ−t)(x−ck−τ)

)1/2
dτ if ck + t < x .

If ck + t < x, making the substitution τ = t+ (x− ck − t)u, we get

(I
1/2,Ω
−,t φck,+)(x, t) =

1

Γ(1/2)

∫ 1

0

1Ω(t+ (x − ck − t)u)

u1/2(1− u)1/2
du .
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Recalling (29), the function AΩ
ck,−(x, t) := (I

1/2,t
Ω,− φck,+)(x, t)−

√
π1x>ck+t vanishes

for ck + t ≥ x, while for x > ck + t we have,

−Γ(1/2) · AΩ
ck,−(x, t) =

∫ 1

0

1Ωc(t+ (x− ck − t)u)

u1/2(1− u)1/2
du .

Next, we show that AΩ
ck,−(x, t) is η Hölder for all η < 1/2 at ck + t. Fixing

q ∈ (2, 1/η) and q̃ < 2 such that 1/q + 1/q̃ = 1, first note that ‖u−1/2(1 −
u)−1/2‖Lq̃([0,1]) <∞. Then, setting ǫ = x− ck − t > 0, we have

−Γ(1/2) ·AΩ
ck,−(x, t) ≤ ‖1Ωc(t+ ǫu)‖Lq([0,1]) · ‖u−1/2(1− u)−1/2‖Lq̃([0,1]) ,

by the Holder inequality. Next, using (5), we find for any β > 2,

‖1Ωc(t+ ǫu)‖Lq([0,1]) =

(∫ ǫ

0

1Ωc(t+ v)

ǫ
dv

)1/q

≤ Cβ · ǫ(β−1)/q .

By taking β < 2 close enough to 2 we may ensure (β − 1)/q ≥ η. Recalling that
x = ǫ+ ck + t, this proves that AΩ

ck,−(x, t) is η Hölder at ck + t.
Finally, we prove that for any η < 1/2 there exists Cη <∞ such that

|AΩ
ck,−(x2, t)−AΩ

ck,−(x1, t)| ≤ Cη|x2 − x1|η , ∀xi > ck + t , i = 1, 2 .

For this, assuming without loss of generality that x1 < x2, we have

Γ(1/2)|AΩ
ck,−(x2, t)−AΩ

ck,−(x1, t)|

=

∫ x2−ck

t

1Ω(τ)√
x2 − ck − τ

√
τ − t

dτ −
∫ x1−ck

t

1Ω(τ)√
x1 − ck − τ

√
τ − t

dτ

=

∫ x2−ck

x1−ck

1Ω(τ)√
x2 − ck − τ

√
τ − t

dτ(64)

+

∫ x1−ck

t

(
1Ω(τ)√

x2 − ck − τ
√
τ − t

− 1Ω(τ)√
x1 − ck − τ

√
τ − t

)
dτ .(65)

Using the change of variable τ = (x1 − ck) + (x2 − x1)u, with dτ = (x2 − x1)du,
for the integral in (64), and the Hölder inequality for 1/q̃+1/q = 1 with 1 < q̃ < 2
and 2 < q < 1/η, we find
∫ x2−ck

x1−ck

1Ω(τ)√
x2 − ck − τ

√
τ − t

dτ

≤
(∫ x2−ck

x1−ck
(1Ω(τ))

q dτ

)1/q(∫ x2−ck

x1−ck

(
1√

x2 − ck − τ
√
τ − t

)q̃
du

)1/q̃

≤ |x1 − x2|1/q
(∫ 1

0

(
1√

u+ (x1 − ck − t)/(x2 − x1)
√
1− u

)q̃
du

)1/q̃

≤ |x1 − x2|1/q
(∫ 1

0

(
1√

u
√
1− u

du

)q̃)1/q̃

≤ Cη|x1 − x2|η .

It remains to estimate (65). We rewrite the integral as
∫ x1−ck

t

1Ω(τ)√
τ − t

1√
x1 − ck − t

(√
x1 − ck − τ√
x2 − ck − τ

− 1

)
dτ .
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Now, for any 1 < q̃ < 2, we have

1√
τ − t

√
x1 − ck − t

∈ Lq̃([t, x1 − ck]) , uniformly in x1 > ck + t .

So, by the Hölder inequality, setting w = x1− ck and δ = x2−x1, it suffices to take
2 < q < 1/η, and q̃ < 2 with 1/q̃ + 1/q = 1, and estimate

∫ w

t

(√
1− δ

w + δ − τ
− 1

)q
dτ ≤

∫ w

t

(
δ

w + δ − τ

)q/2
dτ

≤ δq/2
∫ w

t

(
1

w + δ − τ

)q/2
dτ

= δq/2 · 1

1− q/2
(w + δ − τ)1−q/2

∣∣∣∣
w

τ=t

.

Finally, if 2 < q < 1/η, we have
(
δq/2δ1−q/2

)1/q ≤ δ1/q ≤ |x1 − x2|η. �

7.2. The semifreddo function. Proposition F. Let g be a γ-Hölder function
defined on a closed subset Ω ⊂ R of positive Lebesgue measure. Then, for any
η < γ, by analogy with the notion of the derivative in the sense of Whitney, we
define37 the left-sided Whitney–Marchaud derivative of g on Ω to be

(Mη,Ω
+ g)(x) =

η

Γ(1− η)

∫

Ω∩(−∞,x]

g(x)− g(y)

(x− y)1+η
dy

=
η

Γ(1− η)

∫

Ω−x∩(−∞,0]

g(x)− g(x+ τ)

|τ |1+η dτ .

We then define

(Mη,Ω
− g)(x) =

η

Γ(1− η)

∫

Ω−x∩[0,∞)

g(x)− g(x+ τ)

τ1+η
dτ .

and

(Mη,Ωg)(x) =
η

2Γ(1− η)

∫

Ω−x

g(x+ τ)− g(x)

|τ |1+η sgn(τ) dτ .

Remark 7.1 (Boundary of Ω). Beware that integration by parts with respect to the
variable t is problematic forMη,Ω since ∂Ω is wild in our application. (In particular,
the analogue of Proposition 2.5 is not obvious.)

Remark 7.2. In view of Conjecture A, it is desirable to prove versions of Lemma 4.4
(as well as Lemmas 4.5 and 4.6) for M1/2,Ω, if Ω is compact and satisfies Tsujii’s
condition (5) for suitable β. Although it seems possible to bypass the (problematic)
integration by parts in τ in the proof of Lemma 4.4 by using instead an infinite
Taylor series for g(τ), we refrain from including this analysis here.

We define yet another susceptibility function:

37This definition is meaningful if x is a point of Ω with nonzero Lebesgue density, see also
Proposition F. In our setting, we may use the stronger condition (5).
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Definition 7.3 (Semifreddo fractional susceptibility function). The semifredddo
fractional susceptibility function at t ∈ TSR and along Ω is the following formal
power series

ΨΩ,sf
φ (η, z) :=

∞∑

k=0

zk
∫
(φ ◦ fkt )(x)(Mη,Ω

s Lsρt(x)|s=t) dx .

This function lies “between” Ψfr
φ (η, z) and ΨΩ

φ (η, z) since ΨΩ,sf
φ (η, z) is

η

2Γ(1− η)

∞∑

k=0

zk
∫
(φ ◦ fkt )(x)

∫

R∩(Ω−t)

(
(Lt+δ − Lt)ρt

)
(x)

|δ|1+η sgn(δ) dδ dx .

The results in this section together with Theorem C motivate the statement on
ΨΩ,sf(η, z) in Remark 1.2. (In addition, we expect that Proposition F should allow

to prove that limη↑1 Ψ
Ω,fr
φ (η, z) = Ψφ(z), as formal power series.)

The following notion of differentiability seems to be relevant in our context:

Definition 7.4 (Ω-Whitney differentiability). Let g be a function defined on a
closed subset Ω ⊂ R. We say that g is Ω-Whitney differentiable at t ∈ Ω if there
exists g′Ω(t) ∈ C such that

lim
δ→0,t+δ∈Ω

g(t+ δ)− g(t)

δ
= g′Ω(t) .

For ζ ∈ (0, 1), we say that g is Ω-Whitney ζ-differentiable at t ∈ Ω if there exists

gζΩ(t) ∈ C, such that

lim
δ→0,t+δ∈Ω

g(t+ δ)− g(t)

sgn(δ)|δ|ζ = gζΩ(t) .

The following proposition shows that Mη,Ω is naturally related to Ω-Whitney
differentiability for large enough sets Ω:

Proposition F (Mη,Ω and Ω-Whitney differentiability). Let Ω ⊂ R satisfy Tsujii’s
condition (5) for some β > 1. Then for any bounded function g : R → C which is
Ω-Whitney differentiable at t ∈ Ω, we have limη↑1(Mη,Ωg)(t) = g′Ω(t).

Moreover, for any ζ ∈ (0, 1) and any bounded g : R → R which is Ω-Whitney
ζ-differentiable at t ∈ Ω, we have,

lim
η↑ζ

(
Γ(1− η)

ζ · Γ(ζ − η)
(Mη,Ωg)(t)

)
= gζΩ(t) .

Proof of Proposition F. Let us assume to fix ideas that t = 0 and g′Ω(0) ≥ 0.

We first prove that limη↑1M
η,Ω
+ g(0) = g′Ω(0) by showing that, for any ǫ > 0, we

have (1− ǫ)(g′(0)− ǫ) ≤ lim infη↑1M
η,Ω
+ g(0) ≤ lim supη↑1M

η,Ω
+ g(0) ≤ g′Ω(0) + ǫ.

First, since g′Ω(0) = limh→0,h∈Ω
g(h)−g(0)

h , we can find δ > 0 such that

−ǫ ≤ g(h)− g(0)

h
− g′Ω(0) ≤ ǫ , ∀h ∈ Ω , |h| ≤ δ .

Then, since 0 < η < 1, we can write

Mη,Ω
+ g(0) =

η

Γ(1 − η)

(∫

Ω∩[0,δ]

g(0)− g(−t)
t

1

tη
dt+

∫

Ω∩[δ,∞)

g(0)− g(−t)
t1+η

dt

)
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≤ η

Γ(1 − η)

(
(g′Ω(0) + ǫ)

∫ δ

0

1

tη
dt+

∫ ∞

δ

2 sup |g|
t1+η

dt

)

≤ η

(1 − η)Γ(1− η)
(g′Ω(0) + ǫ)δ1−η +

2

Γ(1− η)
sup |g| δ−η .

Using that

(1− η)Γ(1 − η) = Γ(2− η) with Γ(1) = 1 ,

while lim
η↑1

Γ(1− η) = ∞ and lim
η↑1

δ1−η = 1 ,
(66)

we find lim supη↑1M
η,Ω
+ g(0) ≤ g′Ω(0) + ǫ.

The proof that lim infη↑1M
η
+g(0) ≥ (g′Ω(0) − ǫ)(1 − ǫ) is a bit trickier and will

use (5) for β > 1. By the above computation for the limsup, taking η close enough
to 1 for fixed δ it suffices to show that

(67) lim inf
η↑1

η

Γ(1− η)

∫

Ω∩[0,δ]

g(0)− g(−t)
t1+η

dt ≥ g′Ω(0)− ǫ .

Since

η

Γ(1− η)

∫

Ω∩[0,δ]

g(0)− g(−t)
t

1

tη
dt ≥ η

Γ(1− η)

∫

Ω∩[0,δ]

(g′Ω(0)− ǫ)
1

tη
dt ,

using again (1− η)Γ(1− η) = Γ(2− η), the bound (67) reduces to

lim inf
η↑1

∫

Ω∩[0,δ]

1− η

tη
dt ≥ 1 .

We already know that limη↑1
∫
[0,δ]

1−η
tη dt = limη↑1 δ1−η = 1, so it suffices to show

lim
η↑1

∫

Ωc∩[0,δ]

1− η

tη
dt = 0 .

This will follow from the fact that

lim
η↑1

∫

Ωc∩[0,δ]

1

tη
dt <∞ .

The above bound, i.e. uniform Lebesgue integrability of Fη(τ) = 1Ωc∩[0,δ](τ) · τ−η
as η ↑ 1, will follow from (5) for β > 1 at t = 0. Indeed, for any fixed 1 < β < 2,
there exists Cβ <∞ such that for all t > δ−η we have

m{τ ∈ Ωc ∩ [0, δ] | τ−η > t} = m{τ ∈ Ωc ∩ [0, δ] | τ < t−1/η} ≤ Cβt
−β/η .

Observe next that

lim sup
η↑1

∫ ∞

δ−η

Cβt
−β/η dt <∞ if β > 1 , and lim sup

η↑1
δ

∫ δ−η

0

dt = 1 .

To conclude, just apply the characterisation of Lebesgue integrability of a nonneg-
ative measurable function F given by

∫∞
0
m(τ | F (τ) > t) dt < ∞, see e.g. [21,

§1.5, p. 14, (2)], and use t 7→ g(−t) to get limη↑1M
η,Ω
− g(0) = −g′Ω(0).

The second claim of Proposition F follows from the same replacing (66) by
(ζ − η)Γ(ζ − η) = Γ(1 + ζ − η), with Γ(1) = 1, while limη↑ζ Γ(ζ − η) = ∞ and
limη↑ζ δζ−η = 1. �
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Appendix A. Proof of Lemma 3.2. (Abel’s remark, two-sided)

Recall that if |x| < 1 then

(68)
√
1 + x = 1 +

∞∑

n=1

bnx
n with bn =

(1/2)(−1/2) · · · (1/2− n+ 1)

n!
.

(In particular b1 = 1/2 and b2 = −1/8.) We shall also use the fact [25, 195.01] that
for any real numbers a > τ and b > τ

(69) ∂τ log
(
|
√
a− τ −

√
b− τ |

)
=

1

2

1√
a− τ

√
b− τ

.

Proof of Lemma 3.2. Set x0 = x− ck. To prove the claim on I
1/2
+,t (φck,+,Z)(x, t), it

is enough to show that, for any ck + t−Z < x < ck + t+ Z,

(70)
√
π · I1/2+,t (φck,+,Z)(x, t) = − log |x0 − t|+ logZ +GZ(t− x0) ,

where, for y ∈ (−Z/2,Z/2),

GZ(y) = −2 logHZ(y) , HZ(y) =

√
1 + y

Z − 1

y/Z > 0 .

Indeed, using (68), we have (the power series below are absolutely convergent)

HZ(y) = 1/2 +
∞∑

j=1

bj+1

( y
Z
)j

, HZ(0) = 1/2 ,

∂yGZ(y) = − 2

HZ(y)
·

∞∑

j=1

j · bj+1
yj−1

Zj
,

∂2yGZ(y) =
2

(HZ(y))2
·

∞∑

j=1

j · bj+1
yj−1

Zj
− 2

HZ(y)
·

∞∑

j=2

j(j − 1)bj+1
yj−2

Zj
.

In particular, limZ→∞ supy∈(−Z/2,Z/2) |∂yGZ(y)| = 0, and

sup
Z

sup
y∈(−Z/2,Z/2)

max{|GZ(y)|, |∂yGZ(y)|, |∂2yGZ(y)|} <∞ .

We proceed to show (70). From the definition (26) of I
1/2
+,t , we get

√
πI

1/2
+,t φck,+,Z(x, t) =

∫ t

−∞

φck,+,Z(x, τ)√
t− τ

dτ

=

∫ min(t,x−ck)

x−ck−Z

1√
x− ck − τ

1√
t− τ

dτ .

Recalling that x0 = x− ck, if x < ck + t, then we find

√
πI

1/2
+,t φck,+,Z(x, t) =

∫ x0

x0−Z

1√
x0 − τ

1√
t− τ

dτ .

(This term did not appear in Lemma 3.1.) Using (69), we find
∫ x0

x0−Z

1√
x0 − τ

√
t− τ

dτ = 2 log(|√x0 − τ −
√
t− τ |)

∣∣∣
x0

x0−Z

= log(t− x0)− 2 log(
√
t− x0 + Z −

√
Z) .
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If in addition ck + t−Z < x, then, by (68) we find

−2 log(
√
t− x0 + Z −

√
Z) = −2 log

(√
Z
(√

1 +
t− x0
Z − 1

))

= −2 log

(
t− x0√

Z

∞∑

n=1

bn

(
t− x0
Z

)n−1)

= + logZ − 2 log(t− x0)− 2 log

(
1/2 +

∞∑

j=1

bj+1

(
t− x0
Z

)j)
,(71)

and we have shown that if ck + t−Z < x < ck + t then
√
πI

1/2
+,t φck,+,Z(x, t)(72)

= − log(t− x0) + logZ − 2 log

(
1

2
+

∞∑

j=1

bj+1

(
t− x0
Z

)j)
.

We now consider the case ck + t < x < ck + t+ Z. Then

√
πI

1/2
+,t φck,+,Z(x, t) =

∫ t

x0−Z

1√
x0 − τ

1√
t− τ

dτ .

Using again (69), and we find
∫ t

x0−Z

1√
x0 − τ

1√
t− τ

dτ = log(x0 − t)− 2 log(
√
Z −

√
t− x0 + Z) .

Similarly as for (71), we find, using (68),

−2 log(
√
Z −

√
t− x0 + Z) = −2 log

(√
Z
(
1−

√
1 +

t− x0
Z

))

= −2 log
(x0 − t√

Z

∞∑

n=1

bn

(
t− x0
Z

)n−1)

= + logZ − 2 log(x0 − t)− 2 log

(
1

2
−

∞∑

j=1

bj+1

(
t− x0
Z

)j)
.

We have thus shown that if ck + t−Z < x < ck + t+ Z then

√
π·I1/2+,t φck,+,Z(x, t) = − log |x0 − t|+ logZ − 2 log

(
1

2
+

∞∑

j=1

bj+1

(
t− x0
Z

)j)
.

With (72), the above identity shows the claim on the right-handed spike (σ = +).
For the left-handed spike, we have, recalling x0 = x− ck and (27),

φck,−,Z(x, t) = φck,+,Z(x, 2x0 − t) = Q ◦ T2x0
(φck,+,Z)(x, t) .

Thus, we find

I
1/2
−,t φck,−,Z(x, t) = I

1/2
−,t ◦Q ◦ T2x0

(φck,+,Z)(x, t)

= I
1/2
+,t ◦ T2x0

(φck,+,Z)(x,−t) = I
1/2
+,t φck,+,Z(x,−t+ 2x0) .

Finally, note that −(x− ck − t) = x− ck − (2x0 − t). �
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Appendix B. Vanishing of Xt at the image of endpoints

It is sometimes convenient to assume that Xt vanishes at the endpoints ±1. This
can be achieved in several ways, as we explain now. For t ∈ (1, 2), setting

f̃t(y) =
ft(|at|y)

|at|
=

t

|at|
− |at|y2 = aty

2 − t

at
,

gives a family of maps f̃t preserving [−1, 1], with c0,t = 0, and such that

f̃t(−1) = −1 = f̃t(1) , ∀ t ∈ (−1, 2) ,

so that ∂tf̃t vanishes at the endpoints −1 and 1. This is a transversal family of
quadratic maps in the sense of Tsujii [41], or [6, 5]. The formula for ∂f̃t being

unwieldy, it is convenient to work with the family h̃t : [0, 1] → [0, 1] defined by

h̃t(x) = tx(1 − x), t ∈ (1, 4]. The critical point of each h̃t is 1/2, and Xt(x) =

∂th̃t ◦ h̃−1
t = tx (there is a typo in [8, eq. (2)] where it is stated incorrectly that

X h̃t
t (x) ≡ t). Then h̃t(0) = h̃t(1) = 0 for all t, so that ∂th̃t vanishes at the endpoints

0 and 1. A variant of h̃t is ht(x) = t(1−x2)−1 for t ∈ (1, 2] on [−1, 1] (there, c = 0
and ht(−1) = ht(1) = −1). However, the formulas for ft are easier to manipulate

than those of f̃t, ht, or h̃t, compensating for the non vanishing of the vector field at
the endpoints of a common invariant interval. In addition38, for any fixed t0 ∈ (1, 2)
and all t close enough to t0, we may extend ft on [−2, 2] to a C4 map, also called
ft, with negative Schwarzian derivative, such that Dft is positive on [−2, t − t2]
and negative on [t, 2], with ft(−2) = ft(2) = −2 and ft − ft0 = O(|t − t0|). (The
extended family ft is not needed in the present paper, but we expect it should be
useful to prove equality [ii] in Conjecture A in future works.) Finally, using that
c2,t = t − t2 > −|at|, one can easily show that for any t0 ∈ (1, 2) there are ǫ > 0
and an interval I ′t0 ⊂ (−2, 2) such that fkt (I

′
t0) ⊂ I ′t0 for all t ∈ (t0 − ǫ, t0 + ǫ). In

other words, ft for t ∈ (t0 − ǫ, t0 + ǫ) is a transversal family of unimodal maps on
I ′t0 in the sense of Tsujii [41] since, recalling (10), if J (t1) is absolutely convergent
then J (t1) 6= 0.

Appendix C. Averaging

For regular parameters t (also called “hyperbolic”), the physical measure µsinkt =

P−1
∑P

j=1 δxt,j is atomic, supported on an attracting periodic orbit fP (x1,t) = x1,t
with P = P (t), and can be obtained as

lim
k→∞

P−1∑

j=0

∫
Lk+jt (ψ)φdm = lim

k→∞

P−1∑

j=0

∫
ψ(φ ◦ fk+jt ) dm =

∫
ψ dm · 1

P

P∑

j=1

φ(xj,t)

The convergence is however not uniform in any interval of regular parameters so
one cannot a priori sum over k even if

∫
It
ψ dm = 0.

Since almost every parameter is either regular or stochastic [23] it is natural to
consider, for a C1 observable, say, a Collet–Eckmann parameter t, and ǫ > 0, the
double Lebesgue integral

Aǫ(t) :=

∫

[−ǫ,ǫ]

∫
φ(x)dµt+δ(x) dδ ,

38See [41, Lemma 2.1] for an analogous remark.
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where µt+δ = µsinkt+δ for regular parameters, and µt+δ = ρt+δdm is the SRB measure
for stochastic parameters. Then it is not hard to see, using Lebesgue differentiation,
that the (ordinary) t-derivative A′

ǫ(t) exists for almost every ǫ > 0 and coincides
with

∫
φ(x)dµt+ǫ(x) (see also [44, §3] and [45, (16)]). This does not resolve the

paradox described in the introduction, since the derivative depends on ǫ and does
not coincide with Ψφ(1) in general. (Note that the “weakening of the linear response
problem” in the introduction of [8] — existence and value of the limit as ǫ → 0 of
the derivative A′

ǫ — does not explain the paradox either.)

Appendix D. Complements to the proof of Theorem C

We record here interesting facts which are not needed for our proofs.

Remark D.1 (Spectrum on a pole-extended Banach space). For t ∈ MT, let Λ =
Λt : [−at, at] → [0, 1] be the absolutely continuous bijection defined by Λt(x) =∫ x
−at ρt(u)du. Then (see [30, 38]) the map Ft : [0, 1] → [0, 1] defined by Ft(Λt(x)) =

Λt(ft(x)) is Markov (for the partition Jℓ defined by the endpoints Λt(ck), k =
0, . . . L + P − 1), and Ft is C

1 on the interior of each interval of monotonicity Jℓ,
with inf |F ′

t | > 1. At the endpoints, we have39

(73) (DtFt)
k(Λt(c1,t)±) = sk

√
|(Dfkt )(c1,t)|

(taking right or left-sided limits in the left-hand side according to the dynamical
orbit). In fact, Gt := 1/F ′

t extends to a C1 map on the closure of each Jℓ, with
supG′′

t < ∞. On the Banach space BΛt of bounded functions φ on [0, 1] such
that each φ|intJℓ

is C1 and admits a C1 extension to the closure of Jℓ, the transfer
operator LΛ

t φ(y) =
∑

Ft(z)=y
φ(z)/|F ′

t (z)| thus has spectral radius equal to one,

with a simple eigenvalue at 1, for the eigenvector ρΛt (y) := ρt(Λ
−1
t (y)), and the rest

of the spectrum is contained in a disc of radius κ strictly smaller than 1. Then
Bt = {φ ◦ Λt , φ ∈ BΛt} is a Banach space for the norm induced by Bt,Λ and the
operator Lt on Bt inherits the spectral properties of LΛ

t on BΛt . Any element of

Bt belongs to L1(dm), with
∫
It
|ϕ| dm ≤ ‖ϕ‖Bt . Recall the notations Yt, χk, χ(~Y ),

and Mt from Remark 5.7. Then we claim that we may extend Lt : Bt → Bt
to a bounded operator Lt on the Banach space Bt := Bt ⊕ Yt, whose nonzero
spectrum is the union of the P th roots of sgn(DfPt (cL)) with the nonzero spectrum
of Lt on Bt. Morever the following holds if sgn(Dfp(cL)) = +1: First, setting

M0
t (
~Y ) = Mt(~Y )− ρt

∫
It
Mt(~Y )dm, and letting ~St be the fixed point of St,

ψ∗
t := (id− Lt)−1(M0

t (
~St)) ∈ Bt ,

and the (rank-two) spectral projector Π1 for the eigenvalue 1 of Lt satisfies

Π1(ϕ, χ(~Y )) =

∫
ϕdm · ρt +

〈~S∗
t ,
~Y 〉

〈~S∗
t ,
~St〉

· (ψ∗
t + χ(~St)) .

Second, if
∫
It
Mt(~St) dm = 0 then ψ∗

t + χ(~St) ∈ Bt is a fixed point40 of Lt, while if∫
It
Mt(~St) dm 6= 0 then there exists a non zero νNt ∈ B∗

t such that the (rank-one)

nilpotent operator for the eigenvalue 1 of Lt satisfies N
2
1 = 0 and ΠBt ◦N1 = νNt ·ρt.

39This is an exercise left to the reader.
40In this case, the eigenvalue 1 has geometric multiplicity two, i.e. there is no Jordan block.
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We justify the claims above: First, there exists κ < 1 such that, on Bt,

Ljt (ϕ) =
∫
ϕdy · ρt +Qj

t (ϕ) , j ≥ 1 ,

where for any ǫ > 0 there exists C such that ‖Qj
t‖Bt ≤ C(κ+ ǫ)j for all j ≥ 1. Note

that Mt(~Y ) = ΠBt

(
Lt(χ(~Y ))

)
. Identifying χ(~Y ) and ~Y , we have

Lt(ϕ, χ(~Y )) =




1 0 ρt ·
∫
Mt dm

0 Qt M0
t

0 0 S






ρt ·
∫
ϕdm

ϕ− ρt ·
∫
ϕdm

~Y


 .

In particular if 1/z does not belong to the spectrum of Lt or St, then

(
id− zLt

)−1
=




1

1−z 0 − ρt
∫
Mt(id−zS)−1 dm

1−z
0 (id− zQt)

−1 −(id− zQt)
−1M0

t (id− zS)−1

0 0 (id− zS)−1



 .

If
∫
It
Mt(~St) dm = 0 (with ~St the fixed point of St) then a direct computation gives

that Lt inherits a (second) fixed point ψ∗
t + χ(~St) ∈ Bt from the fixed point ~St of

St. If
∫
Mt(~St) dm 6= 0 then the eigenvalue 1 of Lt has algebraic multiplicity two

but geometric multiplicity one, and the associated nilpotent N1 satisfies our claim.
In both cases, the claim on Π1 follows.

Remark D.2. In the Collet–Eckmann case with an infinite postcritical orbit, the
finite matrix St appearing in the proof of Theorem C will be replaced by a shift
to the right, also denoted St, weighted by s1,k = ±1, acting on a space of infinite
sequences (for example ℓ∞(Z+)). Then St does not have any eigenvalues, and
its spectrum is contained in the closed unit disc. Also, Mt(z) := (id − zSt)

−1 is

the infinite matrix with (Mt(z))j,j = 1, (Mt(z))ℓ,j = (−1)1+ℓ−jzℓ−j
∏j−1
k=ℓ s1,k =

(−1)1+ℓ−jzℓ−jsj−1,ℓ for j < ℓ, and (Mt(z))ℓ,j = 0 for other ℓ, j.
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