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ABSTRACT. For fi(x) =t — x2 the quadratic family, we define the fractional
susceptibility function \I/g to (m, 2) of fi, associated to a C'! observable ¢ at a
stochastic parameter t5. We also define an approximate, “frozen,” fractional
susceptibility function \Pg,to (1, z) such that lim,_1 \Ijg,to (n, z) is the suscep-
tibility function Wy 4, (2) studied by Ruelle. If ¢o is Misiurewicz—Thurston, we
show that \Ifg’to(l/27 z) has a pole at z = 1 for generic ¢ if J; /5(to) # 0, where
TIn(@t) = 352 o sen(DfF(c1))|DfF(c1)| ™, with e1 =t the critical value of f;.
We introduce “Whitney” fractional integrals I and derivatives M on
suitable sets 2. We formulate conjectures on \Ijg,to (n, z) and J,(t), supported
by our results on M"* and \Ijg,to (1/2, 2), for the former, and numerical exper-
iments, for the latter. In particular, we expect that \I/g’to(l/Q, z) is singular
at z = 1 for Collet-Eckmann tg and generic ¢.

We view this work as a step towards the resolution of the paradox that
Wy 4, (2) is holomorphic at z = 1 for Misiurewicz-Thurston f, [35, 17], despite
lack of linear response [8].
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1. INTRODUCTION
For real' parameters t € (1,2), we consider the quadratic family

filx) =t —2?, z€[-2,2].

The critical point is ¢ = ¢o; = 0, the critical value is ¢1; = t < |a¢| where
ap = L € (—2,0) satisfies fi(at) = a; = fi(—as). More generally, we

denote the postcritical points by ¢k = fF(c) for k > 0.

We are interested in the set S of (so-called stochastic) parameters ¢ for which
ft admits an absolutely continuous invariant probability measure p; = pidm. The
set S contains the Collet-Eckmann (CE) parameters ¢, i.e. those ¢ such that there
exist A\ > 1 and Ky > 1 with

1) IDf ()l = A, VE > K.

Linear response is the study of differentiability of the map ¢ — ¢, on suitable
subsets of S, in a suitable topology in the image, viewing u; as a Radon measure or
a distribution of higher order by introducing smooth observables ¢. In the simpler
setting of families ¢ — F} of smooth expanding (or mixing smooth hyperbolic) maps
with 0;F; = X; o F}, the map

t— Re(t) ::/gbdut

IThe map for t = 2 is the full parabola 2 — z2 on [=2,2], which can only be perturbed by
taking t < 2. For ¢ = 1, we get a half-parabola on [0, 1].
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is differentiable, and the derivative sR4(s) at s =t is, by [34], the value at z =1
of the susceptibility function, which is the power series (see also [3, §1])

Wo(a) i= Uaulz) = 32 [ (90 FEY (Xupr)dm.
k=0

Returning to the quadratic family f;, it is well known since the work of Thunberg
[40] (see [14, Theorem 1.30] for a more recent statement) that? ¢ — p, is severely
discontinuous if one does not restrict to Collet—Eckmann parameters with bounded
constants. However, this map is continuous when restricted to a suitable (large) set
of good parameters [42]. More recently, [8, Cor 1.6] showed that at almost every
Collet-Eckmann parameter ¢, and for every 1/2 Holder observable ¢, the function
Res(s) is n-Holder for all n < 1/2 at s = ¢, in the sense of Whitney, on a set
Qo172 = Qcy)2(t) of Collet-Eckmann parameters having ¢ as a density point.

One of the purposes of the present work is to reconcile two apparently con-
tradictory results: In 2005, Ruelle [35] considered the full unimodal map f; (and
more generally, Chebyshev polynomials f; of degree D > 2). He showed that the
susceptibility function (note that X; := 0;f; o fi* = 1 for the quadratic family:
Appendix B discusses the condition that X; vanishes at endpoints)

(2) Wy(z) = Wyu(z) = 3 2 / (60 FF) prdm
k=0

admits a meromorphic extension to C. Ruelle also obtained the remarkable fact
that the residue of the possible pole at z = 1 vanishes (for all observables ¢ € C1).
Soon thereafter, with Jiang [17], they generalised this result to the set MT of
Misiurewicz—Thurston parameters, i.e., those ¢ for which there exist L > 1 and
P > 1withy = f(c) periodic of minimal period P, with |DfF (y)| > 1. This raised
the hope that s — Ry(s) := [ ¢(z)ps(x) dm could be differentiable (in the sense
of Whitney, on an appropriate subset of S) at ¢t € MT, with 0;Rg(s)]s=t = Yy(1).
In® 2015, however, with Benedicks and Schnellmann [8], one of us showed that for
any mixing t € MT, there exist ¢ € C°°, and a set /5 = Q;/5(t) C S containing
t as an accumulation point such that
o [Ralt8) ~ Ry(0)

[Rolt + 5)|51 Ro () < limsup 7] < 0.

(3) 0< liminf
9—0 80

t+0€Qy /2 t+8€ /2
A hard open question is whether ¢ is a Lebesgue density point of ;,5: In the
affirmative, (3) would not be compatible with Whitney-differentiability of R (t)
at ¢t in any natural sense, a strict paradox. Otherwise, the bounds (3), may be
compatible with differentiability in the sense of Whitney, although this would still
be counter-intuitive.

Aiming to shed* some light on this puzzling state of affairs, we introduce below,
for $¥n € (0,1) and an appropriate positive measure set @ C S, a two-variable
fractional susceptibility function \Ilg +(n,z) in §2.2. The idea is to replace ordinary

2As a Radon measure, say — using distributions of higher order does not help.

3In the decade between 2005 and 2015, the hope that R (s) could be differentiable in the sense
of Whitney had already been diminished by the papers [10] and [36].

4Another goal is to give a probabilistic analysis (analogous to the central limit theorem of de
Lima-Smania [22] in the piecewise expanding setting) of the breakdown of cl/2 regularity of the
acim in transversal families of smooth unimodal maps with a quadratic critical point.
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derivatives by fractional derivatives (Marchaud derivatives are convenient, in par-
ticular because they vanish on constants). The main hurdle is that Q has positive
measure but does not contain any nontrivial interval: Despite the vast existing lit-
erature on fractional derivatives, we did not find any suitable notion of fractional
derivatives on such sets (we propose a definition M™% in Section 7). In Conjec-
tures A and A+, we formulate expected properties of \I/g,t(n, z). We also introduce
in §2.2 an approximate, “frozen” fractional susceptibility function \Ifgyt(n, z), where
the dynamics is frozen at a parameter ¢ (so that  does not appear and ordinary
Marchaud derivatives can be used), and we study its properties in Theorem C for
t € MT. (We expect that the techniques of the proof can be extended to TSR
parameters defined in (4), see Remarks 5.1 and D.2 and Footnote 16.)

We next briefly discuss the organisation of the paper and key points in the proof
of our main rigorous result, Theorem C. Section 2 contains the definitions of the
fractional susceptibility functions. (Another approximate fractional susceptibility
function, the response function W (7, 2), is useful to prove Theorem C.) Sections 3
and 4 are devoted to preparatory’material on fractional integrals and derivatives.
We mention here that the case of piecewise expanding maps [7, 10, 9, 3] is easier,
because the invariant density appearing there is a sum of a nice function with a
countable sum of Heaviside functions. For the quadratic maps, the invariant den-
sity (50) involves a sum of quadratic spikes. The fact, used in [7, 10, 9], that the
derivative of a Heaviside function is a Dirac mass is mirrored in the present work by
Abel’s remark that the one-sided half-integral of a quadratic spike is a Heaviside,
so that its one-sided Marchaud half derivative is a Dirac mass (see Lemmas 3.1
and 4.4). However, one-sided derivatives do not seem appropriate to define reason-
able fractional susceptibility functions. The two-sided half integrals, respectively
derivatives, of quadratic spikes (Lemmas 3.2 and 4.4) involve an additional loga-
rithmic, respectively® polar, term. The corresponding “iterated pole” is one of the
features of Theorem C in Section 5 (see Lemma 5.6).

An unexpected ingredient of Theorem C is a new half-transversality condition
J1/2(t) # 0 (see (10)). Conjecture B on sums J,(t) in §6.2 is backed up by our
numerical results in §6.1.

Finally, in §7.1 and §7.2, we introduce and study fractional Whitney—Riemann—
Liouville integrals I7* and Whitney-Marchaud derivatives M (in particular a
“Whitney version” of Abel’s remark) which support our conjectures on \I/g (n,2)

and \I/g’Q(n, z). More precisely, as a stepping stone between the frozen function
\Ilf;(n,z) and \Pg(n,z), we introduce yet another approximate “semifreddo” func-
tion \IISE’Sf(n, z) in §7.2. We expect that the approximate susceptibility functions
\Ilf;(n, z), ¥P(n, 2), and \Ilf;’Sf(n, 2) have the same qualitative behaviour as \Ilf; (n, z)

(Remark 1.2). Proposition D, proved in §5.1, shows that the approximate functions
\Ilg(n, z) and WP (n, z) tend to Wy(2) as n — 1 as formal powers series in z (i.e.,

convergence of the coefficients of each individual z*).
In the remainder of this Introduction, we flesh out the synopsis given above.

—1/2

5Tt is natural that the half derivative of lese, (@ —cg) involves (z — cz) ™!, but we found

no good reference for the computation.
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1.1. Conjecture A on the fractional susceptibility function \Ifg(n,z). We
say that a parameter ¢ € (1,2) is TSR if f; is Collet—Eckmann and satisfies Tsujii’s
[41, (WR)] condition, i.e.,

1 .
4 . PR (fI =0.
(4) Jim diminf = Y I £ (£ ()] = 0
1<j<n
[£7 (e)—cl<n

TSR is implied by polynomial recurrence and implies Benedicks—Carleson exponen-
tial recurrence (see e.g. [11, Proposition 2.2 and references], also for a topological
definition of TSR). Tsujii constructed in [41, Theorem 1 (I)] a positive measure
subset 2 C S of TSR parameters such that, setting Q¢ = R\ ©, and letting m
denote Lebesgue measure,

m([t —6,t+ 5] NQ)

(5) lim = =0, WeQ,

for all 8 < 2 (in particular each ¢ €  is a Lebesgue density point of ).
The transfer operator associated to f; is defined on L!([—2,2],dm) by setting

Etsﬁ(z) = Z M _ 1I<t90(\/1?.g)\j—£M) '

|Dfi(y)l
The dual of L; fixes Lebesgue measure restricted to Iy := [a¢, —a¢] so that fi(I;) C
(Iy).
For t € (1,2) a fixed TSR parameter, it is convenient to extend s — f, as
a Lipschitz map to the whole line as follows: choosing ¢ = €(t) > 0 such that
[t —e,t+ ¢ C(1,2), and such that® [cay,c14] C int(Nrepp—et4eqlr) =: Ite, set
(6)

fr=fiit|lr—t|<e,fr=fi_cforallT <t—e, and f; = fiie forall 7 >t + €.

fi(y)=x

Then, for © C TSR having ¢ as a Lebesgue density point, and ¢ a compactly
supported C! function, the fractional susceptibility function \I/f;(n, z) = \Ilg,t7€(7], 2)
for the quadratic family at ¢ is the function of two complex variables n and z

0 . — i ! (Lers — Lo)pe()
VE02) = g 2 / /éemg_t)af”,;(x)) S sen(s) dida.

(writing dz = dm(z), dd = dm(d)), in the sense of formal power series in z, for
fixed n with Rn € (0,1). (Motivation and details are given in §2.2.)

For ) satisfying (5) for some § > 1, we define a “Whitney—Marchaud” fractional
derivative M in §7.2. For n € (0, 1), Proposition F in §7.2 gives conditions on ¢
and () ensuring that

m r1-¢ . co ) _ m g(t+9) —g(t)
1CT77 (7} T(n—=2¢) M g(®) s—0,t+se  sgn(d)|d]m

We can now state our main conjecture’:

6Recall that supp(p:) = [c2.¢, ¢1.¢].
"The threshold for n below is 1/2; for families with criticality d the expected threshold is 1/d.
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Conjecture A. For almost every mizing® t € TSR, there exist Ay > 1, € > 0, and
a set @ = Q(t) C TSR containing t and satisfying (5) for all § < 2, such that, for
any compactly supported C' function ¢, and any N > 1, the following holds:

i. For any n with 0 < Rn < 1/2, there exists a disc’ D, of radius > 1 such
that \I/d)’t(n, z) is holomorphic in {(n,z) | 0 < Rn < 1/2 z € Dy}.
ii. For any real 0 < n < 1/2, we have the fractional response formula

™ V2, (0.1) = M2 [ oo (o) do

iii. The power series \ngt(l/Q,z) defines a holomorphic function in the open
unit disc. For a generic CN function qg the unit circle is a natural boundary
for this function; the limit as z € (0,1) tends to 1 of \Ilgyt(l/Q,z) does not
exist; the limit as z € (0,1) tends to 1 of (z — 1)\I/gt(1/2,z), if it exists,
does not vanish. ,

iv. For any n with ®n € (1/2,1) there exists a disc D,, with radius in (1/X, 1)
such that the function \I/Q(n, z) is holomorphic in {(n,z) | 0 < Rn <
1/2,z € D,}. For any n with Ry € (1/2,1) and any generic CN func-
tion QS we have that \I/Q (77, 2) has a singularity in the open unit disc.

v. We have lim, \I/¢,t(77, ) Uy (2) as formal power series in z (recall (2)).

For families of piecewise expanding maps, a more precise version of [iii] for the
ordinary susceptibility function Wy ,(z) (similar to Conjecture A+ below) was es-
tablished [9, Theorem 1], using results in [7, 10]. (We expect that other results of
[9], on the iterated logarithm law e.g., can be adapted to the quadratic family.)

Also in the piecewise expanding setting, the analogue of [i] and [ii] in Conjec-
ture A, replacing 1/2 by 1, and taking  to be a neighbourhood of ¢, has been
established in'? [3].

We explain next how the conjectured properties of \Ilf; (n, z) reflect the behaviour
described in [8] of the absolutely continuous invariant measure and may also con-
tribute to resolve the paradox'! arising from comparing the results of [35] and [17]
with those of [8]. (The fractional susceptibility function being holomorphic in two
variables also raises the hope to use tools such as Hartog’s extension theorem.)

First, the n Holder upper bounds of [8] on .4/, together with Proposition F
and [ii] in Conjecture A would imply that, if Q. /, satisfies (5) for some 3 > 1,

LA N L Ru(t+98) — Ry(t)
¢=n T(n—¢) T(1—mn)s=0itsen sgn(d)|6]"

=0, Vpe(0,1/2).

Next, if [ii] in Conjecture A could be established at any 7 € [1/2,1) for which
either side of (7) is well defined, then we would have for any ¢ at which R,(t) is

8Some results of [8] require polynomial recurrence. We expect that this is an artefact of the
method used there, but maybe TSR must be strengthened to polynomial recurrence.

9All discs in the present work are centered at the origin.

10Tphe weighted Marchaud derivatives in [3] could be useful to understand the logarithmic
factors appearing in [8].

HThe “averaging” response studied in [44, §3] and [45, (16)] does not resolve the paradox, see
Appendix C.
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O-Whitney 1/2 differentiable (Definition 7.4, Proposition F in §7.2)

(SN 1 Ryt +0) = Ru(t)
®) S T(U/2=0) ~ T(1/2) s-0ttsen sgn(d)o]1/2

(If t € MT, [8] furnishes upper and lower bounds on (Ry(t) — Ry (t + 0,)) /|02,
for suitable sequences d,, — 0, but the existence of the limit in the right-hand side
of (8) is not known.)

If the last claim of [iii] in Conjecture A holds we also expect that, for ) satisfying
Tsujii’s condition (5) for all 8 < 2, and generic ¢,

U2 (¢, 1/2+ v (n,1
o) o YEC1200 20
¢tz T'(1/2-¢) nt1/2 I'(1/2 —n)

In view of Proposition F in §7.2, the above inequality would establish that R is not
Q-Whitney n-differentiable if n > 1/2 (Definition 7.4). In particular, the ordinary
susceptibility function (2) at z = 1 could not be interpreted as a derivative. (The
singularity of U;(z) in the open unit interval could then be a “scar” of the singularity
at z =1 of \Ilgﬁt(n,z) for some 1 < 1, presumably n = 1/2.) The inequalities (9)
could be useful to determine whether ¢ is a density point of the set ;5 in (3).

Remark 1.1 (Tangential families). In view of the linear response result in [11],
replacing the quadratic family by a “tangential” family f, of smooth unimodal
maps all topologically conjugated to a TSR map ft, we expect that, taking Q) a
small enough neighbourhood of ¢, claims [i] and [ii] in Conjecture A, hold, replacing
1/2 by 1, and, in addition,

Re(t) —R
lim ¥ - (n,1) = limM.
nti 6 Tt t—71
It would be interesting, but more challenging, to investigate whether “tangential-
ity” of a family f; at a single point ¢y implies some additional (Whitney) regularity
of the response at tg.

1.2. Fractional transversality 7,. Conjectures B and A+. It is well known
that all'? Collet-Eckmann parameters ¢; are transversal (see [43, Theorem 3]) in
the sense of Tsujii [41] (see also Appendix B), i.e

= O fr(cjr)|r=t - 1
10 J(t) = —_— = — #0.
) " jz:; Dfi(c1e) jz:; Dfi(c1) ’

To state Conjecture A+ and the fractional transversality condition appearing in
Theorem C (see §1.3), setting sgn(z) = ro7 for z € Ry, and sgn(0) = 0, we let

(11) so=1, sp:=sps=sen(DfF(c1s)) € {-1,+1}, k>1.

Then, we define, for ¢ > 1 such that fF(c) # c for all k > 1, and n > 0,
Skt

12

12 Z < IDFFeral””

whenever the sum converges absolutely, and in this case we say that ¢ satisfies the
n-summability condition. Note that the parameter ¢ = 2 (the full quadratic map)

121y fact all “summable” parameters, i.e. those for which J(t) is absolutely convergent, are
transversal, see [20, Cor 1.b] and [4, Cor A.4].
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satisfies J1/2(2) = 0. We expect that ¢t = 2 is the only 1/2-summable parameter
where the fractional transversality condition J/o(t) # 0 fails: This is the main
claim of Conjecture B, supported by numerics, in Section 6.

Now, if f; is Collet—Eckmann, setting u; = —p¢(0) - v/7/2 # 0, we put

o0

(13) U1/2() U1/2t = Ug - Z \/W
i (c1)

The function Uy /5(2) is holomorphic outside of the disc of radius 1/ Ve, with
Uy 24(1) # 0 if and only if 7 /5(t) # 0. We shall also need the power series

(14) Uu;

Uur =u
) =)= L e
The function U; /2( z) is holomorphic outside of the disc of radius 1/v/)., with

> 1 u;}zt()
NVAC = £0.

k=0 \/DfE(c1t)| s

Next, following [9] (where this function was denoted o) we set, for ¢ € CY,

(15) Sg(2) = Lo u(z Z¢0u -

(X4(2) is holomorphic in the open unit disc. If t € MT, then ¥4(2) is rational.)
Recall that if ¢ : R — C is C°, compactly supported, and C' at y € R, the
Hilbert transform of ¢ at y is defined by the Cauchy principal value (see also §2.1)

(16) W) = 1. [ A 0o

Then, for ¢ a C' function, we define a formal power series

oo

(17) SHE) =SH0(2) = see - H(1¢)(cor)2 "

£=1

Finally, for » > 0, ¢ > 1, and a bounded sequence 1, (¢) of functions in the Sobolev
space Hy[—2,2] = {¢ | 1_o9 - ¢ € H;(R)}, we introduce the formal power series

oo

(18) £V = see - du(0)2 !

=1
We can now state the announced complements to [iii] in Conjecture A:
Conjecture A+. Fort, ), and ¢ as in Conjecture A, we have
U3 (1/2,2) = U o,1(2)Z6.6(2) + Win1y2,4(2) + Vit1y2,4(2) s
with V 6.1/2, (2) holomorphic in an open annulus A containing St. Moreover, there

exist v > 0, ¢ > 1, and functions 1/;,5(6) € Hy[-2,2], with fIt 1/%(5) dm = 0, such
that

WQl/m( z) = u1+/2t )[Elft(ZHsz/(finf)'Ef’"(Z)dm}-
k=0
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Finally, E;Z)" (2), and, for generic peCN (any N > 1) the functions quyt(z) and

E?;t(z) are holomorphic in the open unit disc and have a natural boundary on S*.

Remark 1.2 (Approximate Susceptibility Functions). We expect that claims [i], [iii],
and [iv] (but not [ii]) of Conjecture A, as well as the claims of Conjecture A+, hold
for the three approximate fractional susceptibility functions \I/fr(n, z), \Il“p(n, 2),
120 Yy, Z¢, and Eﬂ’, and re-
placing W i7(2) and VS, ,(2) by suitable W; | ,(2) and V3, ,(2), for + = fr,
rsp, and (€2, sf), respectively. Claim [v] for the approximate fractional susceptibil-
ity functions \I/f;(n, z) and WP (1, 2) is the content of Proposition D.

and \Ilf;’Sf(n, z), keeping the same functions Uy /o, U}

1.3. Frozen and response susceptibilities: Theorem C and Proposition D.
We move to the rigorous results. To keep this “proof of concept” paper short,
we will focus on the countable subset MT C S of Misiurewicz—Thurston (MT)
parameters. This toy model setting allows us to present new ideas with the least
possible technicalities. In addition, the “paradox” discussed above occurs at MT
parameters [8].

We shall mostly study here an approximate fractional susceptibility function,
the frozen fractional susceptibility function (Definition (2.2))

U (n, 2) = U (n,2) Z 60 i@ Eapila)]mt s

where M7 is the two-sided Marchaud fractional'® derivative of order 1 and ¢ is C*
and supported in [—2, 2].

Sedro [39] has recently proved item [i] of Conjecture A for \Ilf;(n,z) for Misi-
urewicz parameters.

Our main rigorous result, Theorem C, stated in Section 5.2, furnishes the
analogue of Congecture A+ for W'(1/2,2), considering parameters t € MT. In
the MT case, the functions X4, Z;‘ and XY are rational and the singularities of
\Ilg(l /2, z) on the unit circle are simple poles. (We also expect this to hold for
e ,(1/2,2)if t € MT.)

We also introduce (Definition 2.3) a response fractional susceptibility function by
taking the Marchaud derivative with respect to x

UEP(n,2) =W Z M"beft) prda.

The response function is related to the frozen susceptibility function (Proposi-
tion 2.5) and will be used to prove Theorem C. (See [3] for a fractional response
function in the piecewise expanding setting.)

Although their value at 1 is not expected to coincide with MR (t), we be-
lieve that Wi(n, z) and WP (1, z) share the qualitative properties of Ue(n,z) (Re-
mark 1.2). Finally, recalling (2), Proposition 2.5 and Lemma 2.4 imply (see §5.1):

Proposition D. As formal power series,
. i T rsp o
lim Uy(n,z) = lim®, (n,2) = Vy(2).

I3We recall definitions in §4.1. A good introduction to fractional derivatives is the book [26].
See also the short introduction [31] and the treatise [37].
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1.4. Whitney fractional integrals and derivatives: Abel’s remark and

the semifreddo fractional susceptibility function \I/f;’Sf(n, z). In §7.1 we in-

troduce Whitney fractional integrals I7** and prove Lemma E, the analogue of
Abel’s remark for I'/% (and suitable sets Q satisfying (5)). In §7.2, we intro-
duce Whitney-Marchaud derivatives M™%, and use them to define the semifreddo
fractional susceptibility function \Ilf;’Sf(n, z), a stepping-stone to the fractional sus-
ceptibility function from its frozen version. Proposition F gives conditions ensuring
lim, 11 M™%g(z) = g&(z), where g () is the Q-Whitney derivative of g at = € €,

from Definition 7.4. §7.2 also contains Proposition F on lim,¢ [E&:Z; (M™g)(2)].

2. DEFINING FRACTIONAL SUSCEPTIBILITY FUNCTIONS

2.1. Preliminaries. Hilbert transform. Gamma and Beta functions. We
next record classical facts for further use. First, the definition (16) of the Hilbert

transform can be explicited as (H¢)(y) = —= limsyo f5° w du. If ¢ is
C' and compactly supported then H¢ coincides with the following distributional
derivative

d 1
(1)) = T [ o) logly—alda.
and the Cauchy principal value corresponds to integration by parts, since
d 1 d 1 1
o [ otorogly —alas = 2 [ty wtoglul du =~ [ /() logly ~ ol da.
Note that there exists C' < oo such that for any compact interval J

[H(1;0)(z)] < C|J|sup|¢|,Vx € int(J]).

Euler’s Gamma function is I'(n) = fooo 2" e~ dx (recall that it has simple poles
at n=0,—1,—2,...). The Beta function is defined for ®x > 0 and Ry > 0 by

1
B(x,y) :/ w1 - w)? " du.
0

It satisfies T'(z)['(y) = B(z,y)I'(x + y). Since I'(3/2) = /7/2, I'(1) = T'(2) = 1,
and I'(1/2) = /7, we have B(1/2,1/2) = 7 and B(1/2,3/2) = 7/2. Recall also
that sin(7/4) = cos(m/4) = /2/2.

2.2. Susceptibility functions \Ilgf(n, 2), \Ilf;(n, z), W;P(n,z). Proposition D.
We first motivate heuristically our definition of the fractional susceptibility function
\I/g(n, z). The starting point is the right-hand side of (7) in [ii] from Conjecture A,
i.e. the Marchaud derivative of Ry (t). Our first task is to rewrite

Ro(s) = Ro(t) = [ dpudm~ [ opim
along the lines of [3]: If s belongs to a suitable subset of Q2 of CE, then for every

r > 0, and g > 1 there exists k < 1 such that for any bounded function ¢ supported
in [~2,2] and any ¢ € H;[-2,2] with fIt 1 dm = 0, there exists Cy 4 such that

|/¢£’;(w>dm|:|/(¢>offwdm|gc¢,wk, vE> 1.
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In particular, if ¢ is supported in It,

(19) /¢1d L) /qbﬁk Y)dm = Z/¢ofk vdm.

If ¢ also belongs to €2, the fixed pomt property L.p, = p, for 7 = s,t implies
[ o= L.~ piam = [o(2.~ Lopiam.

Since [(Ls — Li)pedm = 0 (using that fy([cas, c14]) = [cau,c1,] C Is) if [t — | is
small enough, we would like to multiply the factor of ¢ in both sides by (id — £,)~*
to recover Ry (s) — Ry(t) and then attempt to implement the “recipe” in §4.1 for
the Marchaud derivative. Writing (id — 2£,)™' = Y 7o ) 2*£%, and using (19), this
motivates our definition for the fractional susceptibility function:

Definition 2.1 (Q-Whitney—Marchaud fractional susceptibility function). For t €
TSR and € > 0 as in (6), let Q C TSR have t as a Lebesgue density point. For
Rn € (0,1), the (Whitney—Marchaud) fractional susceptibility function \I/g(n, z) =
\I/g,m(n, 2) (of the quadratic family, along 2 at ¢, for the observable ¢ € C!) is the
formal power series in z

20 W)= gy S [ [ st

(Ligs — Li)pe()
o]+

sgn(d)dd dx .

(The choice of € implies that © — (Li+5 — L£¢)pe(2) is supported in I, . C I;.)

The coefficient of z* in the power series (20) is a sum of improper integrals, for
d € (—0,0) and 6 € (0,00). For each fixed k > 1, every ¢ such that ¢t + 4 € €, and
every 15 € L' (and ¢) supported in I; ., we have, since Iy C I,

(21) 2" / (60 1Ei5)(@) @) dr = [ o) (Ll svs)(a) da

The presence of (id — z£;45) "1 in (21) is the reason we restrict the integral to good
parameters t + 6 € Q (see also Appendix C).

In the present work, we mostly study the frozen fractional susceptibility function:
Definition 2.2 (Frozen susceptibility function). Let ¢ be a TSR parameter and
choose € > 0 as in (6). For n € (0,1) the frozen susceptibility function \Ilf;(n, z) =
Wi, (0, 2) (of the quadratic family, at ¢ for the observable ¢ € C') is the formal

power series'?

(22) Ui(n, 2) : (¢ o fF) (@) M (Lspi(x))|s=t dz,

where M, is the two-sided Marchaud fractional derivative of order 7, in the param-
eter ¢, in the sense of distributions of order one (Definition 4.1). In other words,
for fixed 77, we have, as a formal power series in z,

R I
v02) = gy -7 e se)

MRecalling (6), the function @ — MY (Lsps(x))|s=¢ is supported in It . C It.



12 VIVIANE BALADI AND DANIEL SMANIA

((Liys — Lo)pe) (x)
|6

- lim
e—0

gn(d)dd dx,

[t|>e

where the integral over dt is viewed as a distribution of order one.

Applying (21) to each term of (22), we find (formally)

VE(n,2) = [ &(id—2Le) " (M (Lspe(x))]s=t) dz,

Iy

In Section 5, we shall prove Theorem C on the frozen susceptibility function for
n = 1/2 and Misiurewicz—Thurston parameters ¢.

Formulas for fractional response are not as neat as for linear response, since
the usual Leibniz and chain rules are replaced by infinite expansions in the case
of fractional derivatives. (See Eq. 2.209 in Section 2.7.3 of [32] for the chain rule.
For the Leibniz formula, see §15 in [37].) However, we shall see in Proposition 2.5
that a simplification occurs for the frozen susceptibility function. This motivates
the definition of a response fractional susceptibility function:

Definition 2.3 (Response susceptibility function). For n € (0,1) and ¢ € C! is
compactly supported, the response susceptibility function is defined by the following
formal power series

WP Z Mw o fF)- Xyprdm = Z M”qboft) prdm .
If n € (0,1/2), then

(23) v Z oo r) M) as

follows from integration by parts for the Marchaud derivative'® [37, (6.27)]. We
will see in Lemma 5.2 that (23) in fact holds for all n € (0,1), up to taking the
Marchaud derivative of p; in the sense of distributions.

In the limit as n — 1 the following easy lemma shows that the response suscep-
tibility function converges to the Ruelle susceptibility function:

Lemma 2.4 (Ruelle susceptibility as a limit of response susceptibilities). Fizt € S
and a compactly supported ¢ € C1, and let W4(2) be Ruelle’s susceptibility function
(2). Then, as formal power series in z,

T U (1), 2) = Wy(z) .
lim ¥, (n,2) = Wy(2)
The proof of Lemma 2.4 does not use that fii,(x) = fi(z) +7
Proof of Lemma 2.4. Apply lim, 1 M"g =g’ (e.g. [3]) to g =¢o fF € CL. O

Finally, using Lemma 5.2, we give the easy proof of the following remarkable
result in §5.1 (the identity (25) greatly simplifies the proof of our main result on
the frozen susceptibility function, Theorem C, for more general smooth unimodal
maps it seems there is no way to bypass the study of M2 (Lspr)):

15Use that ¢ and p; are compactly supported while, on the one hand, we have Mn((bofZt ) € Lfoc
for all p > 1, while ¢ o ft € L* for all s > 1, and, on the other hand, we have M"(p;) € L] _ for
[39] any 1 <7 < 2(1 +2n)~ !, while p; € L7 for all 1 <7 < 2.

loc
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Proposition 2.5 (Relating the frozen and response susceptibility functions). For
any'® mizing t € MT and n € (0,1), we have, as distributions of order one,

gn(2)
I(l—n)
where g, € Hy for some r >0 and q > 1, with sup, ., HgnHHg < oo for any fized
e >0, cmdf]Rg,7 )dm = 0.
In addition, there exists k < 1 and for any compactly supported ¢ € C', there
exists V;fz(z) =2 >0 v;27 holomorphic in the disc of radius k=" such that

(24) MI(Lspe(x))|s=t = —Mpi(2) +

(25) \Pf;(n, z) = V() = VP (n, 2) as formal power series in z.
Finally, we have, as formal power series, lim, \Ilg(n, z) = Uy(2).

Proposition 2.5 and Lemma 2.4 imply Proposition D: both the response and
the frozen fractional susceptibility functions converge to the Ruelle susceptibility
function as n — 1. (However W”¥ and U do not satisfy [ii] from Conjecture A.)

3. HALF INTEGRALS OF SQUARE ROOT SPIKES

After recalling the definitions of Riemann-Liouville fractional integrals, we re-
visit Abel’s computation of the one-sided half-integral of a square root spike and
extend it to the two-sided half-integral. The corresponding statements, Lemma 3.1
and Lemma 3.2, will be used in Section 4 to compute Marchaud derivatives.

3.1. Riesz potentials and Riemann—Liouville fractional integrals. For any
¢ € L' and for n € (0,1), the Riesz potential fractional integral is defined for
Rn>0,n+#1,3,5,... by (see [37, (5.2)-(5.3), §12.1])
1 o I p(t I p(t
2T (n) cos(nm/2) J_o |t — 7|17 2 cos(nm/2)

where I are the left- and right-sided Riemann— Liouville fractional integrals [37,
(5.2)—(5.3)] (there is a typo in the second line of [37 5.4)])

N ol
Lo =15 /. e /

. 1 9(n) ¢t+y
I-‘b(t)r(n)/t prat /

If g;(x) is a function of two variables x and ¢, we write (I;7 gt)(x) to denote the
fractional integral acting on the parameter ¢ and evaluated at x and ¢, and similarly
for the one-sided integrals I” ; and I7 ;.

Note for further use that, setting Q¢(t) = ¢(—t), T,o(t) = ¢(t + a), we have

(27) NoQ=QolI" [JoT,=T,017.

The case which will interest us most is n = 1/2, that is, “half Riesz potential
integrals” or “half Riemann—Liouville integrals.” In §3.2, we recall the proof of a
key observation of Abel regarding the ordinary one-sided half-Riemann—Liouville
integral of square root spikes, and we present its two-sided version, Lemma 3.2.
(Lemma 3.2 will be a key ingredient to prove our main result in Section 5.)

o

16The proof shows that the proposition holds more generally, for example for mixing TSR
parameters.
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3.2. Abel’s remark: One-sided half integration of square-root spikes. In
this section, we recall a result of Abel on one-sided half integrals (Lemma 3.1) and
extend it to two-sided half integrals (Lemma 3.2). The corresponding results will
be used to prove Lemma 4.4 below about the half Marchaud derivative of a spike.
The following fact was probably first observed by Abel [1, 2] (see also [33]):

Lemma 3.1 (Abel’s remark). Fiz k> 1 and 0 € {—1,+1}. Consider the left and
right square-root spikes (in xz) at ¢y +t

(28) ool t) = (Jz =k —t) ™ Louso(errn, @t ER.

Then the one-sided Riemann—Liouville half integrals Ii ((bck +) (with respect to t)
are the following Heaviside jumps (in x) at cx + t:

I (Ger )@, t) = VT - Loseprt(@) s I3 (o) (@,8) = VT - Locoura(2).

Proof of Lemma 3.1. The half integral 12 of ¢en+(z,t) with respect to t is
1 T p,
(60, )0) = g [ 2 ar
t

I'(1/2) (r—t)t/2
- /+OO il T)_1/219>0k+7'(x) dr
I'(1/2) (r —1)1/2
0 ifep +¢> T,
L - dr ifeg +t<w
F(1/2) (r=t)(z—cp—T1))1/2 k :

If ¢, + t < x, making the substitution 7 =t + (x — ¢ — t)u, we get

T—Ck 1 1 1
(29) /t ((T—t)(.’L'—Ck—T))l/Q dT/O Wdu:B(l/Q,l/Q)
Recalling B(1/2,1/2) = 7 and I'(1/2) = /7, we find

u?f%#x%wz{

0 ifep+t>x,
VT ooifeptt<a.’
The other claim follows from (27) since
d)qu*(xvt) = ¢qu+(‘r7 2@ —cp) —t)=Qo T2($—Ck)(¢ck7+)(z’ t).
Indeed, we find
L 6o~ (@,t) = I/} 0 Q 0 Ta(o—cy) (P +) (1)
= 120 Ty oy (Do) (s —t) = T2 (5 —t + 20 — 1)),
Finally, > ¢ — t + 2(x — ¢;) if and only if z < ¢ + ¢. O

Replacing the one-sided Riemann-Liouville fractional integral Il by the (two-
sided) Riesz potential 1" from (26), Lemma 3.1 must be replaced by the following
lemma, which includes an unbounded logarithm corresponding to the “other side.”

Lemma 3.2 (Two-sided version of Abel’s remark). For any real number Z > 1,
any integer k > 1 and any x € I, the one-sided Riemann—Liouville half integrals of
the Z-truncated right and left square-root spikes

1(c +t,c .+t+z)($) 1(c +t—Z,cp+t) (35)
30 e ) = ———= s Gop,—z(@,t) = —= — ;
(30) Per,+,2(7, 1) (x—ck—t)1/2 Gy, —,z(x,t) (ck—l—t—x)l/Q
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satisfy, for o =+ and any |x — ¢, —t| < Z/2,
1% (bey0,2) (1) =

g

N

where G'z(y) is analytic on |y| < Z/2, with limz_,00 SUP|y|< z/2|0yGz(y)| = 0, and

(—loglz —cp —t| +1log Z+ Gz(o(t —z +c1))),

sup sup max{|Gz(y)],10,Gz(y)l,19;Gz(y)|} < oo.
Z>1 |y|<2/2
The elementary proof of the above crucial lemma (which will be used to prove
Lemmas 4.4 and 4.5) is given in Appendix A.
Finally, the remark below will be used several times in the sequel:

Remark 3.3 (Phase and parameter half-integrals of a spike). Since & > ¢, +t — u
if and only if ¢ < x 4+ u — ¢, we have for any 1 < Z < oo, recalling (30),

1/2 1/2 1/2 1/2
1M (G, 2) (@, 8) = I 2(bep 4,2) (,8) , 1Y 3 (Gepm 2) (@, 1) = T2 (G = ) (2, 1),
and for any 1 < Z < o0

1/2 1/2 1/2 1/2
L/ (Gepr2)(@,t) = I 2 (bo . 2) (@, )y 17 (bem 2) (@ t) = L2 (G 2) (2, 8) .
4. MARCHAUD DERIVATIVES APPLIED TO SPIKES AND SQUARE ROOTS

After recalling the definition of Marchaud derivatives M" and extending them
as distributions in §4.1, we show in §4.2 how M/2 acts on the singular components
(spikes and square roots) of the invariant density p;. The lemmas in this section
will be crucial to prove Theorem C in Section 5.

4.1. One-sided and two-sided Marchaud derivatives M} and M". Let g :
R — C be bounded and y-Holder. We recall that the left-sided Marchaud fractional
derivative (with lower limit « = —oc0) [37, pp. 110-111, Theorem 5.9, p. 225], where
it is denoted by D, see also [16, §2.2.2.3] is defined for n € (0,v) and € R, by

, o Tyl —gly) 1 P gl —glztr)

09w = iy | G =iy L e
. *g(x) —g(z —1)

(31) =T /0 Sy dr

If g is bounded on R and differentiable'” at z, the limit as n 7 1 of M (g)(z) is
equal to the ordinary derivative ¢’(x) (see e.g. [31, §3.2] or [3]).

The integral (31) is an improper integral. In the application of this paper, g(t)
will be bounded as t — 00, so'® the only delicate limit is 7 — 0. Concretely, we
will work with the expression (see [37, (5.59-5.60)])

n T o U < gle) —glz+7)
(M+g)(.%') - lel%l(M-l-,eg)(‘T) T 161%8 F(l o 77) /700 |7_|1+77 dT .

The right-sided Marchaud fractional derivative (with upper limit b = +00) is
defined for n € (0,1) and = € R by

" o *g(x) —glx+7)
Mgt = gy ) S

171f g is bounded and differentiable to the left at , the limit as 5 1 1 of Mi (9)(z) is equal to
the left-sided derivative g’ (z), the notation is thus confusing.
18This is an advantage of Marchaud derivatives over Riemann-Liouville fractional derivatives.
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: : U *g(x) —glx+7)
— 1 1Y A/jn frd 1 m .
elw( _’ﬁg)(x) elw I'(1-mn) /6 T1+n dr

If ¢ is bounded on R and differentiable at a (differentiable to the right is enough),
then lim, M7 (g)(z) = —¢'(z) (see e.g. [3]).
We define the two-sided Marchaud derivative by
Mlg(x) — M7 g(x)
5 .

M7g(z) =

Note that M"g(x) = lim. o Mg(z) where

U gz +7) - g(x)
32 M7 = dr.
(32 200) = gy L S s
Note for further use that, recalling Qg(t) = g(—t), Tag(t ) g(t + a), we have
(33) MloQ=QoM" , MloT,=T,0oM! 6 o=+.
Therefore,
(34) M'o@Q=—-QoM", M"oT,=T,0oM".

We shall sometimes need to consider M7"¢g (if g is not Holder, for example) in
the sense of distributions (of order one):

Definition 4.1 (Marchaud derivative in the sense of distributions of order one) For
n € (0,1) and a measurable function g such that the integral G(y f Y
is well-defined and almost everywhere finite, with!'®

lim M"G(z) € Li,.,
e—0

we define the two-sided Marchaud derivative of ¢ in the sense of distributions of
order one by setting, for any compactly supported C'' function ),

(35) JOrg) @) o =~ [l Mr6()] /(@) do.

The one-sided Marchaud derivatives M” and M in the sense of distributions are
defined analogously (for M”, it is convenient to set G(y) = — f g(u

Note that (34) and (33) extend to the setting of Definition 4.1.

If g:(z) is a function of two variables z and ¢, then (M/g:)(z) or (M"gs)(z)|s=t
denote the Marchaud derivative acting on the parameter ¢ and evaluated at x and
t, and similarly for the one-sided derivatives M” ; and MY ,.

Remark 4.2 (Marchaud in the sense of distributions). If g € C! is compactly supp-
ported then the definition (35) is in fact an identity which can be deduced from
Fubini, Lebesgue dominated convergence, and integration by parts (for C' com-
pactly supported ). Let us write the computation in the one-sided case:

Jorzg) @ a - / i&%r(ﬂ = PR

iy [ v

90ne could weaken this condition, up to exchanging the limit and the derivative in (35). We
shall not need this more general notion.
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0
Gx) -G
S/ / / (2) (@ +7) W' (z) dz dr
Fl—mn) /) o 7|+
€

- [ty [ e e e

Remark 4.3 (Marchaud and Riemann-Liouville). If g is C' and and |¢'(7)| =
O(|r|"7=17¢) for some € > 0 as 7 — —oo ([37, pp. 109-110]) then the left-sided
Marchaud derivative of g coincides with the left-sided Riemann—Liouville deriva-
tive with lower limit a = —oco of ¢

Similarly, the right-sided Marchaud derivative of g coincides with the right-sided
Riemann—Liouville derivative with upper limit a = oo of g

(M29)(1) =~ 1 (g)(1) = ﬁ% / Oo u‘@w

The remark above will be used in the proof of Lemma 5.2. (Note that Lemma 4.4
is a generalisation of this remark, for g a one-sided spike and n = 1/2.)

4.2. The half derivative M'/? of spikes, square roots, and C' functions.
The key fact we shall use is the following lemma about Marchaud derivatives (in
the sense (35) of distributions) of spikes and truncated spikes, for Z > 1,

| -
(bwo,a(-r) = —Z2E29% (bwo,U,Z(x) = 10<a’(zfzo)<2 ) ¢Z0,U($) .

\/|zf:c0|’

Lemma 4.4 (Half Marchaud derivatives of a spike). For xy € R and o = =+, the
following holds: The one-sided half Marchaud derivatives satisfy, as distributions
on continuous compactly supported functions,

Mj-/Q((bIUHF)(x) = \/E “ Oz 5 Mi/Q(d)xo,f)(x) = \/E O -

The two-sided half Marchaud derivative satisfies, as a distribution on C' compactly
supported functions,

M1/2(¢z0,0)($) = % ) (7‘('5350 - ZL';SCO) :

Finally, for any Z > 1, the two-sided half Marchaud derivative satisfies, as a
distribution on C* functions supported in [xo — Z/2,x0 + Z/2],

o 1
MY 0 02)0) = 572 - (W0 = 2+ (oo - 2)))
where ®z(y) is analytic on |y| < Z/2, with limz_,c sUp|y|<z/2 [Pz (y)| = 0, and

sup sup max{[®z(y)l,[0yPz(y)[} < oo.
Z>1 |yl<Z/2

In view of the expansion (50) for the invariant density, we also need Marchaud
derivatives of square roots and truncated square roots, defined for Z > 1 by,

(Emo,-l-,z(-r) = 1$0<$<$0+Z VI — Xo, ngo,—,z(ﬂﬁ) = 1$0—Z<z<z0 CVIo — T
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Lemma 4.5 (Half Marchaud derivatives of a square root). Let o € R. The one-
sided Marchaud derivatives of square roots satisfy, for o = =+,
Nz
M;/2(]—az>azo(\/ |-T - $O|)) = T]—az>azo (-T) .

For Z > 1, the two-sided Marchaud derivatives of truncated square roots satisfy

MY (rg0,2) () = (TLowsaa, (2) — loglz — 0| +log Z) + @z (o (w0 — 7)),

o
2\/7
where ®z(y) is analytic on |y| < Z/2, with limz_, SUp|y <z /2 |®z(y)| =0, and

sup  sup max{|®z(y)l,9,Pz(y)|} < oo.
Z>1 |yl<Z/2

Lemma 4.6 (Action of Marchaud derivatives on C! functions). For anyn € (0,1)
and any C! function g : R — R with supg |¢'| < oo, the two-sided Marchaud
deriative M"(g) is (1 —n)-Holder.

Proof of Lemma 4.4. To show the claim on Mi/2(¢mo7+)($), we must show that,
for any C! function 1, compactly supported on a bounded interval J, we have

(36) [ v 1/2( 220 >d$\/_1/)($0)

We shall use two facts. On the one hand, the distributional derivative of the
Heaviside 1,~, is the Dirac mass at y, in particular, for any compactly supported
C! function 1, and any bounded (interval [a, b] containing y, we have

b b
(37) [ @t = [ 1@ @) dt = vl + v,
y a
On the other hand, in view of Remark 3.3, Lemma 3.1 gives
1/2 P+ (T +7)
= 1 .
3 1m0 = g [ D b= L, 0

We now move on to prove (36). We have, recalling (35) (in other words, integrating
by parts with respect to x using Fubini, before taking the limit ¢ — 0),

/Jw( M2y (2) da

_ / hm/ Gau:4 (@) = Goot (@ +7) drdzx,
2w J; 10 |7'|3/2

where ¢, 1 (x) = 0 if 9 > = and, otherwise,

- z r 1
39 - x:/ - d :/ ——dy =2V — 29 .
( ) ¢ 0,+( ) _OO¢ 07+(y) Y o \/ﬁ Yy 0
Next, for zp — = < € < 0, integrating by parts, we find,

/ ¢mo, ¢$o, (‘T + T) dr

2|T|3/2
_y zoz\/x—xodT_i_ € \/x—xo—\/x—i—T—xodT
a 2|r[3/2 wo—z 2|r[3/2

T=I0 T € 1 1
+/ 73 dr
S vo—z 2V/T +T — 0 |T|
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+

Vi —x9g—+\xr—120+¢€ 1
le]1/2 -

2|:1+/6 11+‘r>mg(1') 1 \/:L'SCO\/:L'SC0+€1:|

dr +

o 2\/m |7]1/2 |e]1/2
‘ 1I+T>zo( ) dr +2\/ zoi\/zfxojLe
mmlm |e|1/2
[ bug(wFT) Vr — a0 —r—x0+ €
(40) —/_OO 7|T|1/2 dr +2 FRE .

Note that limqo 710‘7‘1% Zote — () for any fixed z > . Using first (38), and
then (37) (recalling that 1) vanishes at the endpoints of J), we have,

o+ (T +7T) 1/2
7\/_/1/; 16%1/ P b | OL r 1)) o
= ¢ (x)dz = V- (o),
ﬁ JN[zg,00)

which concludes® the proof of (36) for M}r/2(¢%7+).

For the claim?! on M1/2(¢z07,), we use (33) and
(41) P, +(2) = Pag,— (220 — 7).

Next, we show the claim on the two-sided Marchaud derivative M/?(¢,, 1 )(x).
We will apply Lemma 3.2. We first claim that Mi/2(¢%7+ — Guy+.2)(x) is C* (in

fact, C*°) on = < zg + Z. Indeed
2(1/2) - MY (bny, 4 = br.1.2) (@)

o 1z>z0+2 '¢z0,+($) B 1I+T>Z0+Z i ¢107+(‘T + T) d
; 572 T.

If x < xg+ Z, we find

M (gt = Gug4.2)(@) = — L /Oo bt (@ HT) 4

2U(1/2) Joy—wsz 73/2
(42) L / - ! L dr = Ga(z —20)
= — T = Xr — X .
20(1/2) Jog—sz VE+ 7 — 20 797 e

Clearly, if y < Z/2,

~ 1 o 1
Gz(y)l = ‘m/—wz Wt )2 32 dr

U U v B U SR B 1 |
@ <|EEmm [, = remmas < aT

We next focus on Mi/2(¢z07+13)(z). Just like in the proof of (36), taking a C*
function ¥ compactly supported in an interval J, we integrate by parts:

/w M2 (1 2)() da

20In particular we have shown that Ml/2 (g, +) = d[_l’_/Q(d)gcU +), as expected, see Remark 4.3.
2l particular, Mi/Q(qb 0,—) = 1/2(@50 _), as expected, see Remark 4.3.
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— (bﬂﬂoa ¢10, ($+T)
oI 1/2 /1/’ ew/ 73/2 drdz,

where (bzo z(x) =01if < 2y and, otherwise,

:c zZ T
d)moz / ¢10+Z dy*/ \O/J’%Od

/mln(z,z0+z) 1 du — {2\/§ if x > g + Z7
Zo

44 = —_— =
(44) N ENCEET ifo <ot Z.

Next, integrating by parts again, we find for z € (29, 2o + £), that, for any 0 < e <
o — T + Z

/ ¢$o7 ¢$0 Z(-r + T) dr

273/2
2/10 IJFZ\/x—xo—\/x—i—T—xo / Vr—xzg—VZ
= - dr
€ 27’3/2 To—2+Z 273/2

2/$0—$+Z 1 1 d +\/x—x0—\/_ Vi—x9g—+\x—x0+¢€
= T —
. 2/ + 1 — 3 T1/2 Vio—z+ 2 Ve
VI — Ty — \/Z
Vg —x+ Z
S R WY e RVt TRl
= ———dr -2 .
: rif2 Ve
As e | 0, the right hand-side above tends to foo %ff—m dr for any fixed z < xg.
If x < xo, Weﬁndforany0<6<ac0—ac

/ ¢Z0, (bmo, (l' +T) dT

7—3/2
To—x+Z S o (e’ z
:2/ 7x+;‘/2 deT+2/ —\/372d7
To—x 27 To—x+Z 27

2{/%—“3 1 1 4 VZ N VZ
-
vo-z 2T T —xoT!/? Vie—z+Z Ve -x+Z2

(45) :/“ E a4 (2 +7) / Pao 2T +7)
0

T2 T sz

So, recalling the definition of I 1/2 , for any x < z¢ + Z, we have

/ Ga0,2(¥) = Gug.z (T +7) 4 1Y% (g 1.,2) (@)

7.3 /2

Tor(1 /2 e
Summarising, and recalling (42), we have shown that if JN[zg+ Z/2,00) = ), then

/w M2 () (@) d = — /w VY (600 ) (@) dz = V(o)
and?2

/ B(R)MY2 (B4 ) () do = / $(2)Gz(x — o) dz + / B(E)MY (b0 4 2)(x) da

22In particular, Mi/2(¢>x0,+,z) = fdli/Q (b20,+,2), as expected.
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/w )Gz (x — o d$+/¢ VY2 (g 1.2) (@) da.
Next, by Remark 3.3, Lemmas 3.1 and 3.2 give for g — Z/2 < < x¢ + Z/2 that
1Y (ba0.4.2)(@) = I3 (G 1.4.2) (@) =0

1
= —(—log|z — zo| +log Z + Gz (¢ — )

N

1
(47) :—(—log|:c—x0|+10gZ+Gg(x0—x)),

Nz

where y — Gz (y) is analytic, with
(48) lim sup |0ng(y)| =0, sup sup max(|0,Gz(y)l, |8§Gg(y)|) < o0,

27200 y|< Z>1 |y|<Z/2

Recalling that ¢ is C' and vanishes at the endpoints of J, we have shown that
2 [ 0@ M s ) @) = [ 000 O 0y 4(2) = M2 (6101 (0))

— V(o) /w 2@ — z0)dz

Vi@ [—1og|x—x0|+logZ+Gg($0—x)] dz
(49) U(xo) /1/) —Gz( :cxo)+M\/x%ox)] dx
v

\/— T — 7 €T,
if Z is large enough (depending only on xy and J). Since the left-hand side above
is independent of Z, the function

Gz — x0) = —Gz(x — 20) + 0.Gz (0 — x)/ /7
does not depend on Z. By (43) and the first claim of (48), we get G(y) = 0. This
establishes the claim on M"/?(¢,, ) and the two-sided half derivative M'/2(¢,, ).

The claim on M*/?(¢,,._)(x) then follows from (34) and (41).
Finally, the claims on truncated spikes ¢z, z follow from (42) and (49) com-

bined with the fact that if o(z — 20) < Z then My/*(¢ug.0 — Gugoz)(@) =0. O

Proof of Lemma 4.5. In view of (38), to show the claim on M}r/2(1z>%(\/x — o)),
it is enough to check that for any continuous ¢ vanishing at the endpoints of J,

1 — 7o) — 1 -
/ ) Tim e>z0(VT — 20) — Logrsao (VT + 7 —20) dr da
2/ 10 BEE

/1/1 VL ? ($00.4) () da

The above follows from (40) and (39). The claim on M 1/2 (1p<zo(v/2o — x)) then
follows immediately from (33) and (41).
For the two-sided half derivative of truncated square roots, we note that

MY Gy — bug.o.z)(x) = 0if oz —x0) < Z.
The claim on M'/2(¢,, ,z) then follows from(45), (46), and (47). O
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Proof of Lemma 4.6. Since n € (0,1), for any h € R, we have
[M"g(x + h) — M"g(x)]

" lim gz +h+7)—glzt+h) —glzt7)+g@)],
2I(1 = 1) €0 Jirj>e ||+
|h| 0o
U 1 T |h|
Smsup|9|<1€1ﬁ}/€ 7_HdeJr/h' 7-1+77d7)
U o 1p]t " |h|1_")
===——suwlg|| —+—|.
L'l —mn) | |(177 n
O

5. RIGOROUS RESULTS ON FRACTIONAL SUSCEPTIBILITY FUNCTIONS

Before stating Theorem C in §5.2 and proving it in §5.3, we recall an expansion
for the invariant density p; due to Ruelle in §5.1, and prove some of its consequences.

5.1. Ruelle’s formula for p;. Fractional integration by parts. Exponential
bounds. Proof of Proposition 2.5. Let f(z) = fi(z) =t — 22 for t € MT, let
¢k = ¢ and recall the sequence s = s from (11). The starting point for the
proof below of our main Theorem C is the expansion given by Ruelle [36, Theorem
9, Remark 16A] (in the slightly more general analytic Misiurewicz setting) for the
invariant density p; of fi, supported in [cz2, ¢1]:

= 111) S r—c
(0)  pile) = voe) + Y O SR
k=1

Ve = el
+ 30 oy omeny<o - VT — el

k=1
where?? v is a O function, w; < 0, wy < 0, and where (for some U; # 0)

©) _ pt(0) e < Ut Wk >1
YD )2 TR T D )2 T

Since t € MT, we have cx.p = ci for kK > L. Note also that, if DfF(cr) > 0,
then the spikes and square roots along the postcritical orbit are all one-sided. If
DfF(cr) < 0 then the spikes and square roots along the periodic part of the
postcrititical orbit are all two-sided.

Remark 5.1. For more general TSR parameters, one could use [11, Prop 2.7] instead
of (50). (To obtain an expansion involving spikes and square roots in the TSR
setting, one could upgrade the results of [11], showing that if f; is smooth enough
then the smooth component of p; belongs to W{ for large enough r > 2.)

In the remainder of this section, we show three consequences of (50).
First, we show that the integration by parts formula (23) holds for all € (0, 1)
(this will be used to prove Proposition 2.5 which implies Proposition D):

23The cutoff is slightly different in Ruelle [36, Theorem 9, Remark 16A], who observes that
“other choices can be useful.”
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Lemma 5.2 (Fractional integration by parts in the response susceptibility). Let
t € MT. For any n € (0,1) and any compactly supported ¢ € C*, we have, as
formal power series,

# [ 0260 ) prdn == 30 [ (60 fE)- 02 (o) da
= k=0
(By definition, the left-hand side above is just \Ilf;p(n, z).)

Proof. Fixn € (0,1). It suffices to show that, for any compactly supported ¢ € C*,
we have

[ M@)oyt = [ wta) M2 ) da,

where M(p;) is understood in the sense of distributions (of order one).
Since 1 is ' and compactly supported, we have

(51) M (V) (2) = 0 (17" + I ) (@) = (1L + I ") (2).

(Use Remark 4.3 for the first equality and the definition of Ii_" for the second )
Next, using the expansion (50) for g(z) := py(x), we find that G(y) == [Y_ g

is the sum of a C'* function with a (finite) sum of one- or two-sided truncated square
roots along the postcritical orbit (see (44)). Thus (recalling (32))

lim M"G(z) = M"G(z) € L},,..
e—0

The above claim is clear if n < 1/2. For n = 1/2, it follows from Lemma 4.5. Finally,
for n € (1/2,1), we may decompose M} = lel/Q o Mi/Q, using the semigroup
property ([19, Property 2.4], for** m = 1 and a = i — 1/2, noting that G € L! and
I¥27(@) € AC since 3/2 — 1 > 1/2).

Now, on the one hand, by definition, we have

Q/w(:z:)(M” z)dr = —2/¢ - M"G(x) da
oty 25 S

I-‘r‘l’

(52) :/1/)/(:0)[ T /f |7‘|1+77 Il(T)dT} dz,

where (52) can be rewritten, integrating by parts in 7, as

[ v [ 4D

On the other hand, (51) followed by fracmonal integration by parts [37, (5.16)] gives
/Mn () do = /(Ifn + I () (@) - g() da
— [ v @+ 1)) o

:/1//(30).F(ll_n)/g(TTT;T)dex.

24The reference to Lemma 2.4 there should be replaced by Lemma 2.5.
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Next, we use?® the expansion (50) to get the following exponential bounds, useful
to prove Theorem C:

Lemma 5.3 (Action of the transfer operator on Sobolev spaces H, for v > 0). Let
t € MT be a mizing parameter. Let r > 0, ¢ > 1. There exist C < oo and k < 1
such that, for any?® ¢ € H[[-2,2] and any bounded ¢ supported in [—2,2]

| [eti@) i@ s~ [ o) du- [ vdol < Cllollm ¥l ¥ > 0.
I

Lemma 5.3 applies to the Heaviside function ¢ = 1, .

Proof of Lemma 5.5. Since ¢ > 1 and we are in a one-dimensional setting, the
Sobolev embeddings imply that, for any 7 > 2 (we may choose 7 < 2 + ), there
exists C' such that for any compactly supported g € H;

lgllcr < Cllgll; -
Since 7 > 0, using mollification, we can approach 1[_5 9% by C' functions 1, with

[bellor < Cllvellmy < Co HwHH s N = dellap—22 < Crel gy, Ve > 0.
Note that (1jc,,c,1%e)/pt € BV with BV norm bounded by Co|[t)c||c1[c,,c,], Decause
Lie,.ch)/pt € BV. (To check this, use that*” inf(., .,) pr > 0 and that p; is the sum
of a C'!' function together with finitely many square roots spikes and square roots,
by (50), and consider separately each maximal interval bounded by postcritical
points.)

Since it is easy to find Cy < co and k < 1 (independent of ¢, 1)) such that

/\ (oo f) ] dm < Cond | pllpm ¢l o, Vi > 1,
R\ I

and since we can write [ (po fHYdm = [ o (o fi “H@o fH|(f~1) | dm, and

e v [ o gy ST
[ oo styvam=[ " ot o) iy
‘ Y(f (@) "
' Z// ANy

(f~* above denotes (fk|m;tlf7j[_atjcz])* ), which gives the limiting contribution

S p(x) dpe - f[t\[cQ o) ¥ dz, the lemma follows from three facts. First,

. . wﬁ
o f! = o fIyE
/[62701] (90 fi )1/16 dz /[02701] (90 fi ) 0t

Second, there exist § < 1, C1 < oo (independent of ¢, 1, see [18, Theorem 1.1],
by the principle of uniform boundedness, C; does not depend on 1) such that

02761 1/}6
I/ (pofi) dut /wdut/ Yedm| < Cill¢|| 12

Pt

d/J/t .

0, Vj>1.
BV

251t would probably be possible to apply [47, Thm 2.I1.b)] instead.
261f supp(¢)) C I, the first term is [ o(z)LI(¢(x)) dz, thus the name of the lemma.
27Sce e.g. [46, Theorem 2c)], or, in the MT case [30].
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Third,
maX{l/wdut/I <wefw>dm|,|/j (00 f) o — ey dml} < sup [oll[9— el po(oa)
t t

To conclude, for each j choose € = #/("+2) 5o that f—; = =077/ = 7. O
We can now provide the proof of Proposition 2.5:
Proof of Proposition 2.5. Setting Ry(y) = [ 10 Pt(w) dz, it is easy to see (using e.g
(50), or, in the TSR case, [11]) that 1_y 1j- M} R;(x) belongs to LY for any n € (0, 1)
and any 1 < ¢ < 2. So sup,c(1) f_ll |MIR;(z)|da < co. In particular, M2 (p:)(x)
)

is well defined in the sense of distributions of order one®® uniformly in 1 € (0, 1).
Next, since fii(x) = fi(x) + 7 for the quadratic family, we find, recalling (6),

(Lisrpe)(@) = (Lep)(x —7) = pex — 1), Vo, V|T| < e,
(Livrpe)(x) = (Lipe)(x Feo) = per(x Feo),Va, if £7>¢.
This implies that for any 7 € (0,1) and any z, we have
D(L—n) (M (Lspe(@))]s=t + M pe(2)) =

_n / pelo —seun)o) = @+ 1) oy g
2 |T|>e€0 |T| K

:lpt(xfﬁo)*npt(fchﬁo) 7@/ Pt($1+7) (r)dr.
2 €9 2 |7|>€0 |T| tn

The above defines a function g, € Hy for some r > 0 and ¢ > 1 for any n > 0,
uniformly in n > €, for any fixed ¢; > 0, and such that (24) holds. Clearly
J gn(x)dz = 0. Since Mp(x) is a distribution of order one, M (Lsps(x))|s=t
(which is compactly supported) is also a distribution of order one.

We next establish the relation between the frozen and the response susceptibility
functions: On the one hand, recalling (22) and using (24), we have

¥, 2) Z /M < ()n)Mﬁpt(z))dx-

Lemma 5.3 holds for the term involving g,. On the other hand, Lemma 5.2 gives

vP( Z ¢ f' (@) M pe() da.

The last claim of Proposition 2.5 follows from Lemma 2.4. (]

5.2. Theorem C on \Ilf;(l/Q z) at MT parameters. For a CE parameter ¢,
recall Ac > 1 from (1), Uyja(z), U )y(2) from (13), (14), and Sy(2), Ey(z), and

X 1/2
Eg’(z) from (15), (17), and (18). Generalising (11), we put, Sx1 = Sk,1,t = Sk, and
(53) Sk = skes =sen(DfF(ce)), k>1,0>1.
The following elementary lemma is proved at the end of §5.3 (see [9, Remark 1.2]

for the case of piecewise expanding maps):

28This was already established in Lemma 5.2.
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Lemma 5.4. Lett € MT with fF(cy) = cr. Then U j2,4(2) is rational, with poles
at the Pth roots of sgn(DfF (cp))|DfF (cp)|=Y2, and Uy 24(1) = Utjl/Q( ), and
Z/lf'/u( 2) is rational, with poles at the Pth roots of |Df¥ (cr)|~'/2, and u1/2 (1) =
UtJJQ( )

For ¢ € C, the function 4 +(2) is rational, with possible simple poles at the Pth
roots of unity, while E?;t(z) 1s rational, with possible simple poles at the Pth roots

of sgn(DfF(cr)). For anyr >0, ¢ > 1 and any sequence ¥ (f) € Hy[-2,2] such
that () = (L + p) for £ > L, the function z — E:;L (2) € Hy[-2,2] is rational,
with possible simple poles at the Pth roots of sgn(Df¥ (cr)).

Set Py(z) = (2 — 1) - Zyp4(2) and P (z) = (z — 1) - Y#(2). Then we have

Pe(l) =500 ole).

If? sgn(DfF (cr)) = +1, then we have that P, (1) = 5- f;rLPfl seH(1r,é)(ce),
and, setting PY(z) = (z — 1) - S¥(2), that PY (1) = + ELILP_l et

Our main theorem is proved in §5.3 (it is reminiscent®® of [10, 9, 36]):

Theorem C (Frozen susceptibility function ¢ € MT). Let t € MT be mizing
with fF(cr) = ci. There exist k < 1 and a sequence 1;(f) € Hy[-2,2] with
1/%(5) = 1/;(5 +p) for £ > L, and flt Yedm = 0 for all ¢, such that the following
holds: For any compactly supported ¢ in C*,

UG, (1/2,2) = Us o, (2)Z06(2) + Wo,1/2,6(2) + Vo2,4(2)
where Vg 1/2,+(2) is holomorphic in the annulus {/\;1/2 < |z| < K71}, while,

W¢71/27t(2’) = u;—/27t(2’)23;7t(2) + Z /(¢ o) fté) . Ez}t (z) dm
=0

If sen(DfP(cr)) = —1, then \112(1/2,2) has a simple pole at z =1, with residue

jl 2 L+P 1
(54) Ug - / Z o(cr)

If sgn(DfF(cr)) = 1, then there®' exists ) € (L>®°[—2,2])* with f] Yydm =0,
such that the residue of the simple pole at z =1 of \Ilf;(l/Q z)/ut is equal to

L+P-1 Jt L+P-1
oy ) e )+ D0 (S s oo + [o-diam),

(=L

The vanishing of (55) is a codimension-one condition on ¢. If J; 2(t) # 0 the
vanishing of (54) is a codimension-one condition on ¢. Thus, in view of Lemma 5.4,
Theorem C establishes the analogue of Conjecture Aliii] and Conjecture A+ for the
frozen susceptibility function at MT parameters.

291t sgn(DfF (cr,)) = —1, then, clearly, Pr1) = ’th(l) =0.

30With respect to [9] the term W, 1/2(2) and the presence of the Hilbert transform are new.

31The notation J ¢* dm represents the action of * € (L*°[—2,2])* on ¢ € L>=[—2,2]. The
formula defining ¢ is given in (62)—(63), it does not depend on ¢.
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Remark 5.5. The proof of Theorem C shows that the statements also hold for
WP(1/2,2), up to replacing the function Vg 1/5(2) by Vi 1/2(2) — V;fﬁ’/Q(z) (using

Proposition 2.5).

Besides Ruelle’s expansion (50), the proof of Theorem C in §5.3 will be based
on Proposition 2.5, Lemmas 4.4-4.6 and Lemma 5.3 above, and Lemma 5.6 below.

Lemma 5.6 (Action of the transfer operator on poles). For ¢ > 2 with ¢i—1 =
ce—1,4 70, set

x 1
- - _ S1.0-1- Lo>c, loce 1,<c fce wmd“
Xé(x) _Xé’t(x) o T —cy cr_1y/c1 —x + cr_q T —cy '

Then, for any k > 1 such that ¢, # 0, we have, setting xx = Xkt = (T — crt) 7L,

LiXk = 51,k Xk+1 + Xbt1 -
Ift € MT, there exist r > 0 and q > 1 such that X, € H;[-2,2] for each £ > 2.
Proof of Lemma 5.6. For any x < t = ¢ and k > 1, using ci = c] — Ck+1 twice in

the second equality of the third line, we find, inspired by the beginning of the proof
of [43, Theorem 2],

1 1 1
Lox(w) = 2\/c1—x(\/cl—:cck * \/cl—:cck)
1 —ci
Ve —z (3 — e +x)
e -z —c _ Va-z  a-—cam

e (a1 —z)(ci —c1+x) o Cr (c1 —x)(x — cpy1)

_m( 1 ):_\/clfx

CL T — Ck+1 Tr —C1

(Xk+1(7) = x1(2)) -

Now, —y/c1 — cky1 = ¢ if ¢ < 0 that is, 51, = 1, while —\/c; — cx41 = —cp if

cr > 0 that is, s; , = —1. Thus, using a Taylor series at cy41, we find

T
1
—\/cl—x:sl,k-ck—i—/ ——du, Ve <c.
chin 2/ —u
Therefore
z 1
1 1., f Qﬁdu
£ ) =5 -1 X T r<cy x<cy JYCr+1 c1—u )
th( ) 1,k rz<cy Xk-l-l( )+ Ckm + cn T — Chin

In other words, setting

z 1
S1,k * 1z261 + 1z<c1 + 1m<01 ka+1 2\/cl—udu

)
T — Ck+1 Cgy/Cl — X Ck T — Ck+1

Xk+1(7) =

we have proved
Lixk(r) = s1,% - Xu+1(2) + Xe41(2) -
It is easy to find 7 > 0 and ¢ > 1 such that all x, € H;[-2,2] if t € MT. O

Remark 5.7. We introduce notation useful for the proof of Theorem C. Let ); be
the L + P — 1-dimensional vector space generated by the functions

(56) Xk:Xk,t=($—Ck7t)71,k=1,...L+P—1.
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We write x(Y) = Y037 g - xi for ¥V = (Y3) € CEFP=1 Then in view of
Lemma 5.6 it is natural to introduce the finite L+ P —1x L+ P—1 matrix S = S;
acting on ), with coefficients

Sk,j = 51,50k j+1 + 81,0+ P10k, LOj,L+P—1 -

The eigenvalue zero of S; has algebraic multiplicity L — 1 but geometric multiplicity
equal to one. Since sgn(DfF (cr)) = é:ffl s1x = spr = sgn(DfF(cr)), the
nonzero eigenvalues of S; consist in the Pth roots of sgn(D ff (c1)), they are simple.

5.3. Proof of the main result (Theorem C).

Proof of Theorem C. We already observed that x +— M;/Q(Espt(x)ﬂs:t is sup-
ported in I . C I; (recall Footnote 14), while the support of b is contained in I;.
Thus, for each compactly supported C* function ¢ such that gb = [odu =: ¢
for all z in I;, and each sequence of C! functions vy, with vy(z) = 1 if |x| < k and
vi(x) = 0 if |x| > 2k, Proposition 2.5 gives

[ @t upois =o. [ ML)
I

= ¢, - lim vk(z)Mt1/2(£tpt(x))dz

k—oo Jr
_ . 1/2 91/2(:6) o
= ¢, - klingo(/]gvk(x)Mz/ pt(a:)dx—l—/RUk(x) T(1/2) dz) =0.

(To show limy_, oo f]R Uk(ac)M;/Zpt(ac)dx = 0, recall Definition 4.1, note that v} () =
0if [z| > 2k, and G(y) := [Y__ pe(x)da = 0if y < ¢z while G(y) = 1if y > ¢1, and
use that the Marchaud derivative of any constant function vanishes.) Therefore,

/ S ()M (Lope(a))da = / (& — &) (ff (x) M} *(Lepe(x))dz, ¥j > 0.

From now on, replacing ¢ by ¢ — q; if necessary, we may thus assume that ¢ is
compactly supported, C! and has zero average with respect to dy;. (This will allow
us to exploit exponential decay of correlations from Lemma 5.3.)

Our starting point is then that W(1/2,2) = UP(1/2,2) + VTS?/Q( z), with
V;S,If/Q(z), holomorphic in the disc of radius x~' > 1, from Proposition 2.5. By
Lemma 5.2,

WEP(1/2,2) = Zzﬁ O @) M ) ) dor

Therefore, using the expansion (50) for p;(x), and recalling u; = 7%
mas 4.4-4.6 imply that there exist r > 0, ¢ > 1, and a function g € Hy
16)

Trpt(o)v Lem-
[—2,2] such
that WP(1/2, 2) can be written as (using the3? Hilbert transform (16))
> [ i + Y e = (6lens) + ML (6o FD)(en)].
j=0 E>1 |ka '(er)

32The improper integral is well-defined and finite, since ¢ is C! and [—at, c1] contains a neigh-
bourhood of each ¢y.
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(Indeed, the Heaviside function and the logarithm from Lemma 4.5, the 1/2-Holder

contribution from Lemma 4.6, and — using the MT assumption — the functions

Loupp(éofinT, (z—cx)~" have uniformly bounded H}[—-2,2] norms, for 7 > 0, ¢ > 1.)
Next, recalling Proposition 2.5, set

VT = ViTe) + 3 [ i

Since f ¢duy = 0, Lemma 5.3 gives k < 1, independent of ¢, such that the function
V! 5(2) is holomorphic in the disc of radius =" > 1.
The rest of the proof is devoted to the study of the singular term of the suscep-

tibility function, that is the formal power series

WE(1/2, 2) Z I; W( crig) +HQL - (¢0 f))(er)) -

We first concentrate on the contribution of ¢(ck+j), which can be rewritten as

sin, Se—j—1
(57) U012, 2) =y Y len) Y 2 e
Z Z D7 1)
Following the arguments of [9, App. B, Remark 1.2] (see also [7, §5] and the proof
of [10, Prop 4.6]), and recalling that our choices imply X (c;) =1 = v(c) for all £,
we introduce for every £ > 1 the formal Laurent series (recalling (53))

(oo}

_k Sk.L
a12(ce, 2) = — P
N ]

Our assumptions imply that aj/(ce,-) is rational and that it is holomorphic in
|z > 1/v/X.. Recalling the definition (13) of U, /2, the coefficient of ¢(c,) in (57) is

=1
tzéflzzf(éflfj) St—1-j
=0 (D=1 ()

_ 1 2) — il okt
(58) = (“1/2< ) WZ [DFM( ce>|>

Thus, we find

sing,0 o > CZ Sp— 1(11/2(05, )
vy (1/2,2)—1/{1/2(2);(;5(@)2 t; =

Next, our MT assumption implies that the function

; > o(ee)se—1an 2(cr, 2)
Vsmg’o(z) = —uy
oL/ ; [DF(cr)|

is rational, and that it is holomorphic in the domain {|z| > 1/ VL.
It remains to consider the contribution of H(1y, - (¢ o f7))(ck), that is,

\I]szng, (1/2 :__Z Z\/m!j(‘]jcill ¢Oftj)Xkdm,
== k>1

with xx from (56).
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Using the notation introduced in Remark (5.7), and introducing M; : J; — Hy
by

LyP-2
M(Y)=YrypoaXr + Z YiXn+1,
k=1
Lemma 5.6 allows us to write, setting Y, = (8 k)j=1,.L+p—1 € {0,1}LFF=1

Z 2L (xr) = Z 2SIV, + Z 24 LEM, Z 2"SP (V)
=0 j=0 =0 n=0

(59) =Y A+ 2B(Va).
=0 =0
Since [} (¢ o ) xkdm = Ji, ¢ LI (xx)dm, using A; and B; from (59), we write

\Ifjfng’l(l/Q,z) as

— Sk L m.

We start with the terms for the A;. Applying Lemma 5.6 (j times), we find,

™

@Ay am =~ sk [ 6@xur (@) d.

Therefore, since sx—1 - Sjx = Sk4;, proceeding as for (58), but with the signs
removed, the contribution of the A; terms in (60) give

Z Z W/ ¢ Sk+]Xk+]( )d

7=0 k>1
= U, () () + V375 (),
with V“;% (z) rational and holomorphic outside of the disc of radius \/Xgl
Next, we analyse the contribution of the B; in (60). Using sg—1 - Sn.x = Skn,
proceeding as for (58) with the signs removed, using [¢dp; = 0, and setting

Tt = *(ut/ﬂ') . zk21 %Yk, we ﬁnd33

“yy L = B;(Yy) dm
71'] =0 k=1 |kalcl I,

- Z ¢ gwtiznsg(ﬁ)dm
=0 n=0

-y / (oYM S 282 () dm
=0 Iy n=0

ffu_ ° = n - Sk—15n,k
(61) - Z /t ¢ ft 7;02 ; D1 01)|Mt(Xk+n)dm

33We identify x = x(Y}) with Y} in (61).
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=2 S [ (6o 1) U5 () + Vi) dm,
/=0

Iy

with

(62) Ye() = Xep1 — Pt/ Xe+1dm,
I

sing,2

and where z — V5 ( ) € Hj[~2,2] is rational, and it is holomorphic outside of

the disc of radius \/_ . . Hence, using again [ ¢du, = 0 and Lemma 5.3,
Vorya(2) i= V() + VS0 (2) + Vol (2 Z [ o stV ) am

is holomorphic in the annulus {\; /% < |z| < k~1}.
Finally, the formulas (54) and (55) for the residues follow from Lemma 5.4. In
particular, since [ ¢du, = 0, using Lemma 5.3, we may take

L+P—-1

(63) /qwt dm := ——sz/ (¢po f7) smt(e)dm

Proof of Lemma 5.4. If t € MT, then Z/l1/2 (z) is the rational function

Uy (2 ( )
|th c1) (=L |th 1)l = ozkp |Df (cr)
ut (szl —1—¢ Lilsgz“rp**e 1 )
= VIDf{(e VD)l 2" = o

Similarly, Uf'/Q(z) is the rational function

N —¢ Lil SLA+P—1—¢ 1
Uy (z) = ( >

e Z T oy D@~ Jorey

We show that X4 (z) and E?;(z) are rational, with possible poles at the Pth roots
of unity for ¥4(z), and at the Pth roots of sgn(D ¥ (cr) for EH (2). Indeed,

LlPl

o0 L—-1
=D dle)z" " = Z Ple)z" " + vz Z P(cLte)z

=

—_

The residue of X4(z) at 1 is thus + ZL+P Yo(cy). It sgn(DfF (c)) = +1 then

—_

L-1 P-

Y s H(Le)(crse)z"
£=0

z
1—2zF

Hz) = Z seH(11,0)(ce)2 ™ +

in which case the residue at 1is & ZL+P YseH(15,0)(co). I sgn(DfF(cr)) = —1

L—-1 LlPl

SH(z) =Y seH(1Lg) () + Z speH(1,0)(crie)z"

=1

+ P
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0.5

| J i o i

FIGURE 1. Ji(t) for Misiurewicz—Thurston (MT) parameters t.

The same argument gives that Zf(z) is rational, with possible poles at the Pth
roots of of sgn(DfP(cL)), and, when sgn(Df(cy)) = 1, its residue at z = 1 is
equal to & ZL+P_ S0 . O

6. ONE-HALF TRANSVERSALITY: NUMERICS AND CONJECTURE B

Sums J,(t) of the form (12) with n = 1/2 play an important role in our
study of the fractional response in the quadratic family at a Misiurewicz—Thurston
(MT) parameter t. In particular the “one half transversality condition” condition
J1/2(t) # 0 is essential in Theorem C.

The sums (12) already appeared in the literature: For n = 1, we recover the
Tsujii transversality condition J; (t) # 0 (see Tsujii [41]), which is satisfied for every
MT parameter in the quadratic family (and in a far larger class of parameters,
see Footnote 12). Figure 1 illustrates the graph of [Ji(t) over hundreds of MT
parameters. (We explain in §6.1, how these MT parameters were obtained.)

For n = 1/2, the set of 1/2-summable parameters is important in the study of
unimodal maps. Nowicki and van Strien [29] proved (in particular) that quadratic
maps that satisfy the 1/2-summability condition have an absolutely continuous in-
variant probability measure. It turns out that, in the complement of the hyperbolic
parameters, almost every parameter satisfies the 1/2-summability condition (see
Lyubich [23], and also Martens and Nowicki [24, §4]).

However, the condition [J; /Q(t) # 0 does not seem to have appeared in the
literature. The reader may wonder when this condition holds. We do not have a
definitive answer for this. As observed after the statement of Theorem C, it is easy
to see that J;/2(2) = 0. This first came as a surprise to us, but it is in fact natural,
as we explain next.

We already noticed that the piecewise expanding and piecewise analytic map F}
conjugated to f; via the change of variable A = A, given by its invariant densities

(see (73)) (DFy)F(Alere)s) = se\/|(DfF)(c1,e)| we see that J/o(t) # 0 is just
the ordinary transversality assumption [10] of F; for the vector field v = 1 on
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[Fi(A(er,t)), Aler,s)]. Noting that F is just the full tent map with slopes 2, the
fact that J;/2(t) = 0 for the full quadratic map mirrors the fact that the family of
tent maps F, is tangential®* so that F is tangential for the vector field v = 1.

Note also that the measure of maximal entropy of f> coincides with the absolutely
continuous measure. See [28, §8, §9] for classical necessary conditions for this
property to hold. More recently, based on [12, Theorem 2], Dobbs and Mihalache
observed [13, Fact 5.2] that the measure of maximal entropy of an S-unimodal map
f with positive entropy is absolutely continuous if and only if f is*® pre-Chebyshev.
The ([13, Proposition 5.1] only pre-Chebyshev quadratic map is fo : @ — 2 — 22,

The parameter t = 2 corresponds to the simplest combinatorics 0 — ¢; +— co —
c2. One can check that [J; 5(t) # 0 holds for the parameter ¢ corresponding to the
next simplest Misiurewicz—Thurston combinatorics (beware that it is not mixing)
0+ ¢1 — co — c3 — c3. Indeed, this parameter is ¢ = 1.54368 ..., and we have
ft(C3) = C3 with )\1 = ft/(Cl) = —3.0874.. . )\2 = th(CQ) = —th(C3) =1.6786.. .
so that a geometric series gives

=1 - L 1 1

VMl Ve 1+ 1V

6.1. Numerics. We have performed numerical experiments to investigate J; 5 (t)
for hundreds of Misiurewicz—Thurston parameters: We calculate 858 MT parame-
ters ¢, with high accuracy, and we compute the corresponding sums 7 /5(t).

The algorithm consists into finding approximate values for Misiurewicz—Thurston
parameters in the real line, and then use the Milnor—Thurston transformation to
obtain such parameters with higher precision. Indeed, given a real Misiurewicz—
Thurston parameter ¢t = ¢; such that

FEFI(0) = FE(0)
for some k > 1 and j > 1, choose a point x = (21, x, .. S Thtj—1) € RF+3-1 guch

that x; - fi (0) > 0 for every 1 <i < j + k. Next, define

C1

=0.182959....

T(x1, @2, .., Tpj—1) = (Y1, Y25 -+ Yktj—1)

where fo, (y;) = w1 for i <k +j —2, while fo, (yryj—1) = 2k, and y; - f£ (0) >0
for every 0 < i < j 4+ k. Then Milnor and Thurston [27, Proof of Lemma 13.4]
proved that T(z) converges to (c1, fe, (c1), ..., f¥771(c1)) exponentially fast.

We explain next why some of the Misiurewicz—Thurston parameters found by
this algorithm are not renormalizable, and hence mixing: The critical point of
a Misiurewicz—Thurston map f is not periodic, and there is L > 0 such that
f%(0) is periodic. Taking L minimal with this property, let P > 1 be such that
FP(fE(0)) = f£(0). Suppose that P is a prime number, P # 2, the multiplier
DfP(f£(0)) is positive, and f is renormalizable. Then the period of the first (and
only) renormalization of f is P,

F= {7 (If50)], =1F20)] = [=1F70)] [£7(0)]

34The topological entropy is the logarithm of the slope and thus constant, so there are no
bifurcations. It is illuminating to construct explicitly the corresponding topological conjugacy.

35A unimodal map f is called pre-Chebyshev if f is exactly m times renormalisable, for some
m > 0, each renormalisation being of period two, and, in addition, if J is the restrictive interval
for the mth renormalisation, f2" |7 :J — Jis smoothly conjugate on J to z — 1—2|z| on (—1,1).
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FIGURE 2. [;/5(t) for MT parameters .

is the first (and only) renormalization of f, and, additionally, F(f£(0)) = f£(0),
while F(0) is not a fixed point of F', and F2(0) = f£(0). In particular f27(f£(0)) =
fE(0). This implies 2P > L > P. Our numerical experiment give Misiurewicz—
Thurston maps f for which P is a prime number, P # 2, the multiplier D f(f%(0))
is positive, but 2P > L > P does not hold, so that f is not renormalizable.
Moreover the numerical experiment gives .J; /5(f) # 0.

The resulting graph for J; /5(t) can be seen in Figure 2. (To be compared with
Figure 1 for the graph of the Tsujii transversality condition 7 (¢).) The value of
J1/2(t) seems to be always strictly positive except at ¢ = 2, where it vanishes.
However, Jy,2(t) appears to be close to zero (see Figure 3 for a close-up) at a
few values of t. The “almost vanishing of J/2(t)” phenomenon seems to occur
when the real Misiurewicz—Thurston parameter ¢ is such that f; is renormalisable
with deepest (i.e., last) renormalisation has®® topological entropy log?2 (that is,
there is a periodic point —z, € R with period n > 2 such that the intervals
fFl~ze, 2], for K = 0,...,n — 1, are pairwise disjoint, except possibly at their
boundaries, with f;'[—x.,2z.] C [—2«, 2., and the unimodal map g: [-1,1] —
[—1,1] defined by g(z) = x;1f*(z.x) satisfies g(—1) = g(1) = —1 and ¢(0) =
xx). Moreover it seems that this deepest renormalisation is close to a quadratic
polynomial on the interval of renormalisation. (This last property happens when
the so called “complex bounds” are large enough. This occurs for instance in
the first renormalisation of parameters very close to ¢ = 2, see e.g. Douady and
Hubbard [15, Proof of Thm 5].)

Note that if the deepest renormalisation is conjugated to the Ulam—von Neumann
map, then [8] does not give any lower bound for the regularity of the SRB measure.

6.2. Conjecture B on one-half-transversality for the quadratic family.
Our numerical experiments support and motivate the following conjecture.

Conjecture B. For the quadratic family f:, we have:

i. For every real MT parameter t # 2, we have J 2(t) > 0.
ii. In fact, inf {71 /2(t) | t a real MT parameter, t # 2} = 0.

361 particular, this deepest renormalisation is topologically conjugated to fa.
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FIGURE 4. jll'}e;(t) for periodic parameters ¢.

More generally, if t # 2 satisfies 1/2-summability, then Jy/5(t) > 0.

The parameter n = 1/2 is a critical exponent in the following sense: If
n > 1/2 then J,(t) > 0 for every real MT parameter t. If n € (0,1/2) there
are infinitely many real parameters t such that 7, (t) < 0.

1ii.
iv.

G. Levin suggested that we perform experiments also for parameters such that
fE () = ¢ for some P > 1. For such ¢, we set
P-1
sgn((D ff (c1)))

2. [Dff(ca)ln

k=0

In view of the resulting data, which is presented in Figure 4, we expect that claim
[i] of Conjecture B also holds for all real periodic parameters.

Finally, note that if ¢ > 2 then ¢; > 2 and, for all k > 1, we have ff™!(¢;) >

fE(er) > 2, so that |Dff(c))| > |DfF(c1)] > 4, while sgn(Dfft () =

j7§)er (t)



36 VIVIANE BALADI AND DANIEL SMANIA

—sgn((DfF(c1))). Thus, the sum (12) converges absolutely for any 1 > 0 and

1
Jn(t)>1—E>O,Vt>2,vn>O.

7. WHITNEY FRACTIONAL INTEGRALS I AND DERIVATIVES M "

7.1. Abel’s remark for Whitney fractional integrals I'/>* (Lemma E).
For Q C (1,2) satisfying (5) and ¢ € €, it is natural to consider the one-sided
Q- (Whitney—) Riemann—Liouville fractional integrals of ¢ € L' on § defined by

7,2 o L ¢(7_) T
o)) = L'(n) /Qm(oo,t] (t—7)t=n ar

7,2 7# ¢(7_) .
(1796 (1) = /m[m)—( _dr,

I'(n) T—t)n
and the two-sided corresponding object defined by
1 (1)
I"m9e(t) = dr.
) = STyt Jy i

Recalling the spikes ¢, + from (28), we give an analogue of Lemma 3.1.

Lemma E (Abel’s remark on Q). Let Q C (1,2) be a compact positive Lebesgue
measure set satisfying Tsujii’s property (5) for all B < 2. For any k > 1, the
one-sided Q2-Riemann—Liouville half integrals of the square root spikes satisfy

L3 Gen ) (@) = AT, 4 (@) + VT Lana(0).
L (Ge ) @) = AL (@) + VA Tacaa(@).
where AL (x,t) <0 are defined by A2 ,(2,t) =0 if ox < o(ck +t), and

o 1 loc(t+o(z — (ck +t))u)
Ack o'( t) = (1/2) / u1/2(1 _ u)l/?

In addition, x +— A _(x,t) is n Hélder, for o = + and for all n < 1/2.

Ck,0O

du if ox > o(ck +t).

We refrain from stating the Q version of the two-sided Lemma 3.2. (Since (69)
cannot be used, the proof must be more “hands on.” See also Remark 7.1.)

Proof of Lemma E. We handle ¢, 4(x,t). The case of ¢, —(x,t) is symmetric.
The Whitney half integral Ii/ t2 2 of the spike ¢, +(z,t) with respect to ¢ is

1/2(2 o 1 ¢Ck7+($)7-)
50t = 075 |y o

__ ! / Lyseir(2) dr
L'(1/2) Jreptocine (& — i — T)V2(1 — t)1/2

0 if e, +t > x,
1/2
r—c 1o(7) .
(1/2) k<97)) dr ifeg+t<ax.

(r—t)(x—cr—T
If ¢, + t < 2, making the substitution 7 =t + (x — ¢ — t)u, we get

1/2(2 1 Yot + (x —cp — t)u)
( ¢Ck7 )( ) F(1/2) /O u1/2(1 _ u)1/2 du
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Recalling (29), the function A? _(z,t) := (Ié{i’tqbck,Jr)(x,t) — /Tlzsc, ++ vanishes

Ck—
for ¢ +t > x, while for x > ¢ + t we have,

"Moot + (x — cx — t)u)

~I(1/2) - A?kﬁ(z,t) = /0 u1/2(1 _ u)1/2 du .

Next, we show that A (x,t) is 7 Hélder for all < 1/2 at ¢ + t. Fixing

Cky—
g € (2,1/n) and ¢ < 2 such that 1/q + 1/¢ = 1, first note that [[u='/(1 —
u)*l/QHLq([O,l]) < oo. Then, setting € =z — ¢, —t > 0, we have

~T(1/2)- A2 _(2,t) < |Lae(t + eu)lr, oy - w21 — ) ™3| Lago.ny) »

Cky—
by the Holder inequality. Next, using (5), we find for any 8 > 2,
€ 1/q
1ge(t+v _
e (t + ew)l| L, (o.1)) = (/ %du) < Qe
0
By taking 8 < 2 close enough to 2 we may ensure (8 — 1)/q > n. Recalling that
x = €+ ¢, +t, this proves that A? _(x,t) is n Holder at ¢ + t.

Cks—

Finally, we prove that for any n < 1/2 there exists C;, < oo such that
|Ag€_’7(z2,t) — Ag@ﬁ(zl,tﬂ < Cyuleg — 1|, Vo >cp+t, i=1,2.
For this, assuming without loss of generality that z; < x2, we have

D(1/2)|AL (xzo,t) — AL (x1,1)]

Cky,— Cky—

To—Cp L1 —Ck
= / La(7) dr — / lo(r) dr
t \/$2*Ck*7\/7'*t t \/zlfck*T\/Tft
Xo2—Cp 1
(64) = / a(r) dr

i—en VT2 —cp—TT —t

(65) + /twl_Ck (\/$2 — clkg(—T)T\/T —t N 01:(—7-3'\/7 — t) dr.

Using the change of variable 7 = (x1 — ¢) + (22 — x1)u, with d7 = (22 — x1)du,
for the integral in (64), and the Hélder inequality for 1/¢+1/¢ =1 with 1 < § < 2
and 2 < ¢ < 1/n, we find

/m z__ N ;Q (—T)n/f =
< (/:::k(lsz(ﬂ)q dT) : </a:::k (\/-1‘2 — K 1— VT — t)qdu>
1 P 1/q
< oy — w2 </0 (\/u—i— (r1 —cp — tl)/~($2 —z1)v1- u) du)

1 1 q 1/(]
< |y — @] /<7d> < Oyl — x|
< |1 — 22| ( B WoNie=r u < Cylzy — 22|

It remains to estimate (65). We rewrite the integral as

R — (ng
t

VT =tV —c —t\Vas —ck — T

1/q
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Now, for any 1 < ¢ < 2, we have
1
VT —tT1 —c — 1

So, by the Holder inequality, setting w = x1 — ¢ and § = x5 — 1, it suffices to take
2<qg<1/n,and ¢ <2 with 1/§+ 1/q = 1, and estimate

w (S q w (S ‘Z/Q
/ (1/1—7—1) dTS/ (7) dr
p w46 —T ;c \w+d—T
w 1 ‘Z/Q
S e
- ; \w+d—7

— §9/2.

€ L([t,x1 — cx]), uniformly in 23 > cx +t.

w

(w+d— 7')1_‘1/2

1—¢q/2

Finally, if 2 < ¢ < 1/n, we have (6q/251—q/2)1/q <5V < zy — x| O

T=t

7.2. The semifreddo function. Proposition F. Let g be a y-Holder function
defined on a closed subset 2 C R of positive Lebesgue measure. Then, for any
n < 7, by analogy with the notion of the derivative in the sense of Whitney, we
define3” the left-sided Whitney—Marchaud derivative of g on § to be

o g A
o 9(z) —gle+7)
B F(l - 77) /Q—zﬁ(—oo 0] |7’|1+77 d
We then define
and
Or29)) = g [ I i ar.

Remark 7.1 (Boundary of 2). Beware that integration by parts with respect to the
variable ¢ is problematic for M since 9 is wild in our application. (In particular,
the analogue of Proposition 2.5 is not obvious.)

Remark 7.2. In view of Conjecture A, it is desirable to prove versions of Lemma 4.4
(as well as Lemmas 4.5 and 4.6) for M/2%_if ) is compact and satisfies Tsujii’s
condition (5) for suitable 3. Although it seems possible to bypass the (problematic)
integration by parts in 7 in the proof of Lemma 4.4 by using instead an infinite
Taylor series for g(7), we refrain from including this analysis here.

We define yet another susceptibility function:

37This definition is meaningful if z is a point of ©Q with nonzero Lebesgue density, see also
Proposition F. In our setting, we may use the stronger condition (5).
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Definition 7.3 (Semifreddo fractional susceptibility function). The semifredddo

fractional susceptibility function at t € TSR and along  is the following formal
power series

W (0,2) = Y- [0 SO L) =)
k=0
This function lies “between” \Ilf;(n, z) and \Ilfg(n, z) since \Ilf;’Sf(n, z) is

U - k o kY (z ((Lt+5—.ct)pt)(z)s . i
2T (1 — 1) kz:% /(¢ fi)( )/]Rm(Q—t) HER gn(d) doda.

The results in this section together with Theorem C motivate the statement on
Ut () 2) in Remark 1.2. (In addition, we expect that Proposition F should allow

to prove that lim, \Ilf;’ﬁ(n, z) = Wy(z), as formal power series.)

The following notion of differentiability seems to be relevant in our context:

Definition 7.4 (Q-Whitney differentiability). Let g be a function defined on a
closed subset 2 C R. We say that ¢ is 2-Whitney differentiable at ¢ € Q if there
exists gg,(t) € C such that

g(t+9) —g(®)

lim 5 = go(t).

8—0,t+5€Q

For ¢ € (0,1), we say that g is Q-Whitney (-differentiable at ¢ € Q if there exists
95 (t) € C, such that

S40) o)

— S
= t).
50,4660 sgn(d)|d[¢ 9a(t)

The following proposition shows that M™% is naturally related to Q-Whitney
differentiability for large enough sets 2:

Proposition F (M7 and Q-Whitney differentiability). Let Q C R satisfy Tsujii’s
condition (5) for some > 1. Then for any bounded function g : R — C which is
Q-Whitney differentiable at t € Q, we have lim, 11 (M™?g)(t) = g, (t).

Moreover, for any ¢ € (0,1) and any bounded g : R — R which is Q- Whitney
(-differentiable at t € ), we have,

im M 7,82 <
1m<<c T —7) (M g)(t)) = g5(t).

Proof of Proposition F. Let us assume to fix ideas that t = 0 and g¢,(0) > 0.
We first prove that lim,q Mi’Qg(O) = g6,(0) by showing that, for any ¢ > 0, we
have (1 — €)(¢'(0) — €) < liminf,1; M7*¢(0) < lim SUD, 1 MTg(0) < go(0) + €.

First, since gg,(0) = limp—0.nen M, we can find 6 > 0 such that

—egw—g&@)ge, VheQ, |n| <4,

Then, since 0 < n < 1, we can write

PR 9(0) —g(=t) 1 9(0) —g(-1)
Mi7a(0) = r'(l—mn) (/m[o,a] t tn dit /m[a,oo) ti+n dt)
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/ °1 * 2su
= ﬁ ((99(0) + 6)/0 e +/5 tlfnlg' dt)
iU . 1-n L —n
S m(gﬂ(o) + 6)6 + F(l _ 77) sup |g| 4 .
Using that
(11 —n) =T(2—n) with (1) =1,
(66)

while imT'(1 —7) = co and lim ' ™7 =1,
ntl ntl

we find lim sup, 4 Mi’gg(()) < g5(0) + €.

The proof that liminf,; M7 g(0) > (g6(0) —€)(1 — €) is a bit trickier and will
use (5) for 8 > 1. By the above computation for the limsup, taking 7 close enough
to 1 for fixed § it suffices to show that

(67) lim inf M

n /
—_ dt > 0) —e€.
o1 (1 —n) /m[o,a] ti+n = 49a(0)

Since

n / g(0) —g(—t) 1 " / / 1
L(1—mn) — itz 96(0) — €)—dt,
I'(1-mn) QN[0,4] t tn (1 —n) (zm[o,a]( o(0) )tﬂ

using again (1 —7)I'(1 —n) =T'(2 —n), the bound (67) reduces to

1 —
liminf/ a1,
1 Jon,s) 17

We already know that lim,; f[o 6] ?I dt = lim,41 8177 = 1, so it suffices to show

—-n

lim dt =0.
1 Jaenjo,s) 7
This will follow from the fact that
1
lim —dt < 0.

L Jaen(o,s]

The above bound, i.e. uniform Lebesgue integrability of F,(7) = 1geno,5(7) - 77"
as n 1T 1, will follow from (5) for § > 1 at t = 0. Indeed, for any fixed 1 < 8 < 2,
there exists Cg < oo such that for all ¢ > 6~" we have

m{r € Q°N[0,8]| 77" >t} =m{r € Q°N[0,8] | T <t~} < Cat™F/M.

Observe next that
00 6"
lim sup Cgt_ﬂ/"dt<ooif6>1, and limsupd dt=1.
Tl 5—n nTl 0

To conclude, just apply the characterisation of Lebesgue integrability of a nonneg-
ative measurable function F' given by [~ m(r | F(r) > t)dt < oo, see e.g. [21,
§1.5, p. 14, (2)], and use t — g(—t) to get lim,y MZ’Qg(O) = —g6(0).

The second claim of Proposition F follows from the same replacing (66) by
(—mI(¢ —n) =T1+¢—mn), with I'(1) = 1, while lim,4.T'({ — 1) = oo and
lim,pe 0677 = 1. O
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APPENDIX A. PROOF OF LEMMA 3.2. (ABEL'S REMARK, TWO-SIDED)
Recall that if |x| < 1 then

(68) Vitawz=1+ ibnx” with b, = /2CEY2) (/2 -t 1)

n!

n=1
(In particular by = 1/2 and by = —1/8.) We shall also use the fact [25, 195.01] that
for any real numbers a > 7 and b > T

(69) 8Tlog(|\/a7\/b7|)%\/aTT1 —

Proof of Lemma 3.2. Set x¢g = x — cj. To prove the claim on Ii{?(¢ck,+7z)(l', t), it
is enough to show that, for any ¢y, +t —Z <z <cp+t+ 2,

(70) V7 L (G 4.2) (2,1) = —log|ag — t] +log Z + Gz(t — 20),

where, for y € (—2/2,2/2),

VI+Z -1

—=>0.
y/Z

Indeed, using (68), we have (the power series below are absolutely convergent)

Gz(y) = —2logHz(y), Hz(y) =

Hz(y) = 1/2+ij+1 (%)j , Hz(0) =1/2,

2 > . yj_1
9yGz(y) = —m : Z] : bj+1? )
j=1

ST LI o SN AL T o 17 S W
2 T Hz ) jzlj ITUZI T Ha(y) j:2“ AR h

In particular, imz o0 SUP, e (_z /2 z/9) [0y Gz (y)| = 0, and

sup  sup  max{|Gz(y)l,10,G=z(v)],10;G=z(y)|} < 0.
2 ye(=Z2/2,2/2)

We proceed to show (70). From the definition (26) of Llr/f, we get

t
1/2 beyt.2(T, T)
\/EI+/7t¢Ck7+,2($,t) :/_OO k\-/‘rm dr

min(t,z—cg) 1 1
= dr.
/CECkZ Ve—cp—T\t—T
Recalling that zg = x — ¢, if x < ¢ + ¢, then we find
\/;I}F/?Qﬁck + Z(‘T’ t) = b ;# dr.
’ T wo—2 VT0o— T\t —T
(This term did not appear in Lemma 3.1.) Using (69), we find
zo
Lozﬁ dr = 210g(|\/1'0 —T7—Vt— T|)
= log(t — z0) — 2log(\/t —xz0 + Z —VZ).

zo

ngz
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If in addition ¢ +t — Z < x, then, by (68) we find

—2log(Vt — 20+ 2 — VZ) = 2log(\/§< 14t _;O - 1))
(s ()

n=1

> t*SCO J
(71) +10g2210g(tz0)210g<1/2+2b]—+1< = >>

j=1

and we have shown that if ¢, +t — Z < x < ¢ + ¢t then

(;2) \/_;1+1/,752¢Ck1+7z(x7t)
—10 (f—,@)—f—lO Z—QIO —1—|— b —t o ’
g 0 g g 92 j} - j+1 z .

We now consider the case ¢ +t < x < ¢ +t+ Z. Then

t
1 1
%4, £ = B S|
VL by v 2 (2,) o Vro—rvi= "

Using again (69), and we find

dr =1 — 1) —2log(VZ — \/t —x0 + Z).
/ZO /—.To—T T— 7 = log(zo — t) — 2log( o

Similarly as for (71), we find, using (68),

—2l0g(VZ —/i—w0 + 2) = 21og(\/§<1 1+t—%>)

Z
e} n—1
n=1

tf
= +log Z — 2log(zp — t) 21og< Zb]+1< z0> >

We have thus shown that if ¢ +t — Z < 2 < ¢ +t+ Z then

J
\/E'I}r/,féf)c;c,Jr,z(z,t) —log|zg —t| +1log Z — 2log< + ZbJJrl <—) ) :

With (72), the above identity shows the claim on the right-handed spike (o = +).
For the left-handed spike, we have, recalling 2o = x — ¢; and (27),

Per,—2(,1) = bey o+, 2(2, 200 — 1) = Q 0 Togy (¢ey,+,2) (7, 1) -
Thus, we find

1200 z(2,t) = 17 0 Q 0 Topy (e, 4,2)(, )
1/2 _41/2
=1I/;o0 Tozo(Dey,+,2) (T, —t) = +.t Gey +,2 (T, —t + 210) .

Finally, note that —(z — ¢y, —t) = . — ¢ — (229 — 1). O
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APPENDIX B. VANISHING OF X; AT THE IMAGE OF ENDPOINTS

It is sometimes convenient to assume that X; vanishes at the endpoints £1. This
can be achieved in several ways, as we explain now. For ¢t € (1,2), setting

ft(y) _ ft(|at|y) _

t
= — —laly® = ary® — —,
|a] |a] at

gives a family of maps f; preserving [~1, 1], with ¢o; = 0, and such that

f(=1)=~1=fi(1), Vte (-1,2),

so that o ft vanishes at the endpoints —1 and 1. This is a transversal family of
quadratic maps in the sense of Tsujii [41], or [6, 5]. The formula for df: being
unwieldy, it is convenient to work with the family & : [0,1] — [0,1] defined by
hi(x) = tz(1 — x), t € (1,4]. The critical point of each hy is 1/2, and X;(z) =
Ayhy o it =t (there is a typo in [8, eq. (2)] where it is stated incorrectly that
X[ (x) = t). Then hy(0) = hy(1) = 0 for all t, so that d;h; vanishes at the endpoints
0 and 1. A variant of Ay is hy(x) = t(1—22) —1 for t € (1,2] on [1, 1] (there, ¢ = 0
and hy(—1) = hi(1) = —1). However, the formulas for f; are easier to manipulate
than those of f;, hy, or hy, compensating for the non vanishing of the vector field at
the endpoints of a common invariant interval. In addition®, for any fixed to € (1,2)
and all ¢ close enough to to, we may extend f; on [—2,2] to a C* map, also called
fi, with negative Schwarzian derivative, such that Df; is positive on [-2,¢ — 2]
and negative on [t,2], with f;(—=2) = f:(2) = =2 and f; — fi, = O(|t — to|). (The
extended family f; is not needed in the present paper, but we expect it should be
useful to prove equality [ii] in Conjecture A in future works.) Finally, using that
c2t =t — 1% > —|ay|, one can easily show that for any ¢y € (1,2) there are ¢ > 0
and an interval I} C (—2,2) such that fF(I} ) C Ij for allt € (to — €,tg +¢€). In
other words, f; for t € (to — €,tg + €) is a transversal family of unimodal maps on
I} in the sense of Tsujii [41] since, recalling (10), if J(t1) is absolutely convergent

then J(t1) # 0.

APPENDIX C. AVERAGING

For regular parameters ¢ (also called “hyperbolic”), the physical measure 1§""* =
p! Zle 0z, ; is atomic, supported on an attracting periodic orbit fP(z1) =214
with P = P(t), and can be obtained as

P-1 _ P-1 _ s
i 3° [ 28 @)odm = i 3 [ (o ) dm = [wdm- 53" o)
k—oco = k—oo =0 =

The convergence is however not uniform in any interval of regular parameters so
one cannot a priori sum over k even if f I, dm = 0.

Since almost every parameter is either regular or stochastic [23] it is natural to
consider, for a C'!' observable, say, a Collet-Eckmann parameter ¢, and € > 0, the
double Lebesgue integral

Ad(t) = /H [ ota)dussta) a5,

38Gee [41, Lemma 2.1] for an analogous remark.
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where pi;45 = ufj_’%’“ for regular parameters, and pit45 = pi+sdm is the SRB measure
for stochastic parameters. Then it is not hard to see, using Lebesgue differentiation,
that the (ordinary) t-derivative AL(t) exists for almost every e > 0 and coincides
with [ ¢(z)dpese(x) (see also [44, §3] and [45, (16)]). This does not resolve the
paradox described in the introduction, since the derivative depends on € and does
not coincide with ¥, (1) in general. (Note that the “weakening of the linear response
problem” in the introduction of [8] — existence and value of the limit as e — 0 of
the derivative AL — does not explain the paradox either.)

APPENDIX D. COMPLEMENTS TO THE PROOF OF THEOREM C
We record here interesting facts which are not needed for our proofs.

Remark D.1 (Spectrum on a pole-extended Banach space). For t € MT, let A =
Ae o[- at,at] [0,1] be the absolutely continuous bijection defined by A¢(z) =
JZ., pe(w)du. Then (see [30, 38]) the map F; : [0,1] — [0,1] defined by F;(As(x)) =
At(ft( )) is Markov (for the partition J; defined by the endpoints A:(ck), k =
0,...L+ P —1), and F; is C! on the interior of each interval of monotonicity Jy,
with inf |F/| > 1. At the endpoints, we have3’

(73) (DeFy)* (At(ere) ) = sen/[(DfF)(c1)]

(taking right or left-sided limits in the left-hand side according to the dynamical
orbit). In fact, Gy := 1/F] extends to a C' map on the closure of each J,, with
supGy < oco. On the Banach space By, of bounded functions ¢ on [0, 1] such
that each ¢|ins, is C' and admits a C'* extension to the closure of .J;, the transfer
operator LM p(y) = 2 F, )=y ?(2)/|F{(2)| thus has spectral radius equal to one,
with a simple eigenvalue at 1, for the eigenvector p (y) := p;(A; *(y)), and the rest
of the spectrum is contained in a disc of radius s strictly smaller than 1. Then
By = {¢poA, ¢ € By,} is a Banach space for the norm induced by B o and the
operator L£; on B; inherits the spectral properties of £} on By,. Any element of
B; belongs to L!(dm), with fIt lo| dm < ||¢||5,. Recall the notations Yy, xx, x(Y),
and M; from Remark 5.7. Then we claim that we may extend L; : By — B
to a bounded operator L; on the Banach space B; := B; & )}, whose nonzero
spectrum is the union of the Pth roots of sgn(D ff (cr)) with the nonzero spectrum
of L; on B. Morever the following holds if sgn(Dfp(cL)) = +1: First, setting
MUY ) M(Y) = py f[ M;(Y)dm, and letting S, be the fixed point of Sy,

V= (id — L)~ (MO(S))) € By,

and the (rank-two) spectral projector IT; for the eigenvalue 1 of LL; satisfies

1 (o0, x( (W7 +x(Sh) .-

:Sl
\
—
AS)
a
3
2
+

Second, if [, M (S;) dm = 0 then 1} 4 x(S;) € By is a fixed point*® of Ly, while if
i M (S;)dm # 0 then there exists a non zero v € B} such that the (rank-one)
nilpotent operator for the eigenvalue 1 of IL; satisfies N2 = 0 and Ilg, o N7 = v - p;.

39This is an exercise left to the reader.
401y this case, the eigenvalue 1 has geometric multiplicity two, i.e. there is no Jordan block.
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We justify the claims above: First, there exists x < 1 such that, on B,
Li(#) =/<pdy-pt+Q{(<p), i>1,

where for any e > 0 there exists C such that || Q!||5, < C(k+e€) for all j > 1. Note

that M, (Y) = I, (Lt(x(}?))) Identifying x(Y') and Y, we have

. 1 0 ptf/\/ltdm ptfcpdm
Le(o,x(Y)=| 0 Q M} p—pi [odm
0 0 S Y
In particular if 1/z does not belong to the spectrum of £; or S, then
1 0 Pt fMt(id—zS)fldm
. —1 1—2 1—=2
(i[d=2L;) =1 0 (id—2Q)"' —(id—2Q,) *M?(id — z5)~!
0 0 (id — 2S)~1

It fIt My(S;) dm = 0 (with S, the fixed point of S;) then a direct computation gives
that Ly inherits a (second) fixed point ¢} 4 x(S;) € By from the fixed point S, of
S If f ./\/lt(gt) dm # 0 then the eigenvalue 1 of IL; has algebraic multiplicity two
but geometric multiplicity one, and the associated nilpotent N satisfies our claim.
In both cases, the claim on II; follows.

Remark D.2. In the Collet—Eckmann case with an infinite postcritical orbit, the
finite matrix S; appearing in the proof of Theorem C will be replaced by a shift
to the right, also denoted S;, weighted by s; = £1, acting on a space of infinite
sequences (for example ¢>°(Z.)). Then S; does not have any eigenvalues, and
its spectrum is contained in the closed unit disc. Also, M¢(z) := (id — 2zS;) 7! is
the infinite matrix with (My(2));,; = 1, (My(2))e,; = (—=1)F72¢= Hi;z S1E =
(=) 13205, 4 for j < £, and (M(2))e,; = O for other £, j.
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