On Dirac physical measures for transitive flows (2010)
- Authors:
- USP affiliated authors: VARGAS, EDSON - IME ; SAGHIN, RADU - IME
- Unidade: IME
- DOI: 10.1007/s00220-010-1077-9
- Assunto: SISTEMAS DINÂMICOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Heidelberg
- Date published: 2010
- Source:
- Título: Communications in Mathematical Physics
- ISSN: 0010-3616
- Volume/Número/Paginação/Ano: v. 298, n. 3, p. 741-756, 2010
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SAGHIN, Radu e SUN, Wenxiang e VARGAS, Edson. On Dirac physical measures for transitive flows. Communications in Mathematical Physics, v. 298, n. 3, p. 741-756, 2010Tradução . . Disponível em: https://doi.org/10.1007/s00220-010-1077-9. Acesso em: 29 jan. 2026. -
APA
Saghin, R., Sun, W., & Vargas, E. (2010). On Dirac physical measures for transitive flows. Communications in Mathematical Physics, 298( 3), 741-756. doi:10.1007/s00220-010-1077-9 -
NLM
Saghin R, Sun W, Vargas E. On Dirac physical measures for transitive flows [Internet]. Communications in Mathematical Physics. 2010 ; 298( 3): 741-756.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1007/s00220-010-1077-9 -
Vancouver
Saghin R, Sun W, Vargas E. On Dirac physical measures for transitive flows [Internet]. Communications in Mathematical Physics. 2010 ; 298( 3): 741-756.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1007/s00220-010-1077-9 - Non-uniformly hyperbolic flows and shadowing
- Measure of minimal sets of polymodal maps
- Decay of geometry in the cubic family
- Invariant measures for cherry flows
- Real bounds, ergodicity and negative Schwarzian for multimodal maps
- Entropy and ergodic probability for differentiable dynamical systems and their bundle extensions
- Entropy of flows, revisited
- On the phenomenon of topological chaos and statistical triviality
- Critical covering maps without absolutely continuous invariant probability measure
- Topological entropy on points without physical-like behaviour
Informações sobre o DOI: 10.1007/s00220-010-1077-9 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
