Decay of geometry in the cubic family (1998)
- Authors:
- Autor USP: VARGAS, EDSON - IME
- Unidade: IME
- DOI: 10.1017/S0143385798117558
- Assunto: SISTEMAS DINÂMICOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Ergodyc Theory and Dynamical Systems
- ISSN: 1469-4417
- Volume/Número/Paginação/Ano: v. 18, n. 5, p. 1311-1329, 1998
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
SWIATEK, Grzegorz e VARGAS, Edson. Decay of geometry in the cubic family. Ergodyc Theory and Dynamical Systems, v. 18, n. 5, p. 1311-1329, 1998Tradução . . Disponível em: https://doi.org/10.1017/S0143385798117558. Acesso em: 11 jan. 2026. -
APA
Swiatek, G., & Vargas, E. (1998). Decay of geometry in the cubic family. Ergodyc Theory and Dynamical Systems, 18( 5), 1311-1329. doi:10.1017/S0143385798117558 -
NLM
Swiatek G, Vargas E. Decay of geometry in the cubic family [Internet]. Ergodyc Theory and Dynamical Systems. 1998 ; 18( 5): 1311-1329.[citado 2026 jan. 11 ] Available from: https://doi.org/10.1017/S0143385798117558 -
Vancouver
Swiatek G, Vargas E. Decay of geometry in the cubic family [Internet]. Ergodyc Theory and Dynamical Systems. 1998 ; 18( 5): 1311-1329.[citado 2026 jan. 11 ] Available from: https://doi.org/10.1017/S0143385798117558 - Non-uniformly hyperbolic flows and shadowing
- Measure of minimal sets of polymodal maps
- Entropy of flows, revisited
- Real bounds, ergodicity and negative Schwarzian for multimodal maps
- Invariant measures for cherry flows
- Entropy and ergodic probability for differentiable dynamical systems and their bundle extensions
- On the phenomenon of topological chaos and statistical triviality
- Approximation of Bernoulli measures for non-uniformly hyperbolic systems
- Critical covering maps without absolutely continuous invariant probability measure
- Topological entropy on points without physical-like behaviour
Informações sobre o DOI: 10.1017/S0143385798117558 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
