Filtros : "Communications in Mathematical Physics" Removido: "Estados Unidos" Limpar

Filtros



Limitar por data


  • Fonte: Communications in Mathematical Physics. Unidade: ICMC

    Assuntos: EQUAÇÕES INTEGRO-DIFERENCIAIS, MATRIZES, FÍSICA MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GHOSAL, Promit e SILVA, Guilherme Lima Ferreira da. Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation. Communications in Mathematical Physics, v. 397, n. 3, p. 1237-1307, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00220-022-04518-3. Acesso em: 27 jun. 2025.
    • APA

      Ghosal, P., & Silva, G. L. F. da. (2023). Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation. Communications in Mathematical Physics, 397( 3), 1237-1307. doi:10.1007/s00220-022-04518-3
    • NLM

      Ghosal P, Silva GLF da. Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation [Internet]. Communications in Mathematical Physics. 2023 ; 397( 3): 1237-1307.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-022-04518-3
    • Vancouver

      Ghosal P, Silva GLF da. Universality for multiplicative statistics of Hermitian random matrices and the integro-differential Painlevé II equation [Internet]. Communications in Mathematical Physics. 2023 ; 397( 3): 1237-1307.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-022-04518-3
  • Fonte: Communications in Mathematical Physics. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NIJHOUT, Eddie et al. Chaotic behavior in diffusively coupled systems. Communications in Mathematical Physics, v. 401, p. 2715-2756, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00220-023-04699-5. Acesso em: 27 jun. 2025.
    • APA

      Nijhout, E., Pereira, T., Queiroz, F. C. de, & Turaev, D. (2023). Chaotic behavior in diffusively coupled systems. Communications in Mathematical Physics, 401, 2715-2756. doi:10.1007/s00220-023-04699-5
    • NLM

      Nijhout E, Pereira T, Queiroz FC de, Turaev D. Chaotic behavior in diffusively coupled systems [Internet]. Communications in Mathematical Physics. 2023 ; 401 2715-2756.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-023-04699-5
    • Vancouver

      Nijhout E, Pereira T, Queiroz FC de, Turaev D. Chaotic behavior in diffusively coupled systems [Internet]. Communications in Mathematical Physics. 2023 ; 401 2715-2756.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-023-04699-5
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assuntos: SISTEMAS HAMILTONIANOS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JÄGER, Tobias e KOROPECKI, Andres e TAL, Fábio Armando. On the onset of diffusion in the kicked Harper model. Communications in Mathematical Physics, v. 383, p. 953-980, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-021-03995-2. Acesso em: 27 jun. 2025.
    • APA

      Jäger, T., Koropecki, A., & Tal, F. A. (2021). On the onset of diffusion in the kicked Harper model. Communications in Mathematical Physics, 383, 953-980. doi:10.1007/s00220-021-03995-2
    • NLM

      Jäger T, Koropecki A, Tal FA. On the onset of diffusion in the kicked Harper model [Internet]. Communications in Mathematical Physics. 2021 ; 383 953-980.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-021-03995-2
    • Vancouver

      Jäger T, Koropecki A, Tal FA. On the onset of diffusion in the kicked Harper model [Internet]. Communications in Mathematical Physics. 2021 ; 383 953-980.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-021-03995-2
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: FÍSICA MATEMÁTICA

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KŘIŽKA, Libor. Positive energy representations of affine vertex algebras. Communications in Mathematical Physics, n. 2, p. 841-891, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-020-03861-7. Acesso em: 27 jun. 2025.
    • APA

      Futorny, V., & Křižka, L. (2021). Positive energy representations of affine vertex algebras. Communications in Mathematical Physics, ( 2), 841-891. doi:10.1007/s00220-020-03861-7
    • NLM

      Futorny V, Křižka L. Positive energy representations of affine vertex algebras [Internet]. Communications in Mathematical Physics. 2021 ;( 2): 841-891.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-020-03861-7
    • Vancouver

      Futorny V, Křižka L. Positive energy representations of affine vertex algebras [Internet]. Communications in Mathematical Physics. 2021 ;( 2): 841-891.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-020-03861-7
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: FÍSICA MATEMÁTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo et al. Entropic repulsion and lack of the g-measure property for Dyson models. Communications in Mathematical Physics, v. 363, n. 3, p. 767-788, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00220-018-3233-6. Acesso em: 27 jun. 2025.
    • APA

      Bissacot, R., Endo, E. O., van Enter, A. C. D., & Le Ny, A. (2018). Entropic repulsion and lack of the g-measure property for Dyson models. Communications in Mathematical Physics, 363( 3), 767-788. doi:10.1007/s00220-018-3233-6
    • NLM

      Bissacot R, Endo EO, van Enter ACD, Le Ny A. Entropic repulsion and lack of the g-measure property for Dyson models [Internet]. Communications in Mathematical Physics. 2018 ; 363( 3): 767-788.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-018-3233-6
    • Vancouver

      Bissacot R, Endo EO, van Enter ACD, Le Ny A. Entropic repulsion and lack of the g-measure property for Dyson models [Internet]. Communications in Mathematical Physics. 2018 ; 363( 3): 767-788.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-018-3233-6
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assuntos: FÍSICA MATEMÁTICA, GEOMETRIA ALGÉBRICA, ANÁLISE FUNCIONAL, ÁLGEBRAS DE OPERADORES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAKAWA, Tomoyuki e FUTORNY, Vyacheslav e RAMIREZ, Luis Enrique. Weight representations of admissible affine vertex algebras. Communications in Mathematical Physics, v. 353, p. 1151–1178, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00220-017-2872-3. Acesso em: 27 jun. 2025.
    • APA

      Arakawa, T., Futorny, V., & Ramirez, L. E. (2017). Weight representations of admissible affine vertex algebras. Communications in Mathematical Physics, 353, 1151–1178. doi:10.1007/s00220-017-2872-3
    • NLM

      Arakawa T, Futorny V, Ramirez LE. Weight representations of admissible affine vertex algebras [Internet]. Communications in Mathematical Physics. 2017 ; 353 1151–1178.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-017-2872-3
    • Vancouver

      Arakawa T, Futorny V, Ramirez LE. Weight representations of admissible affine vertex algebras [Internet]. Communications in Mathematical Physics. 2017 ; 353 1151–1178.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-017-2872-3
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GRANTCHAROV, Dimitar e RAMÍREZ, Luis Enrique. New singular Gelfand–Tsetlin gl(n)-modules of index 2. Communications in Mathematical Physics, v. 355, n. 3, p. 1209–1241, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00220-017-2967-x. Acesso em: 27 jun. 2025.
    • APA

      Futorny, V., Grantcharov, D., & Ramírez, L. E. (2017). New singular Gelfand–Tsetlin gl(n)-modules of index 2. Communications in Mathematical Physics, 355( 3), 1209–1241. doi:10.1007/s00220-017-2967-x
    • NLM

      Futorny V, Grantcharov D, Ramírez LE. New singular Gelfand–Tsetlin gl(n)-modules of index 2 [Internet]. Communications in Mathematical Physics. 2017 ; 355( 3): 1209–1241.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-017-2967-x
    • Vancouver

      Futorny V, Grantcharov D, Ramírez LE. New singular Gelfand–Tsetlin gl(n)-modules of index 2 [Internet]. Communications in Mathematical Physics. 2017 ; 355( 3): 1209–1241.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-017-2967-x
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assuntos: MECÂNICA ESTATÍSTICA, MODELO DE ISING

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo et al. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields. Communications in Mathematical Physics, v. 337, n. 1, p. 41-53, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00220-014-2268-6. Acesso em: 27 jun. 2025.
    • APA

      Bissacot, R., Cassandro, M., Cioletti, L., & Presutti, E. (2015). Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields. Communications in Mathematical Physics, 337( 1), 41-53. doi:10.1007/s00220-014-2268-6
    • NLM

      Bissacot R, Cassandro M, Cioletti L, Presutti E. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields [Internet]. Communications in Mathematical Physics. 2015 ; 337( 1): 41-53.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-014-2268-6
    • Vancouver

      Bissacot R, Cassandro M, Cioletti L, Presutti E. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields [Internet]. Communications in Mathematical Physics. 2015 ; 337( 1): 41-53.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-014-2268-6
  • Fonte: Communications in Mathematical Physics. Unidade: ICMC

    Assunto: FÍSICA MATEMÁTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      O'CARROLL, Michael e FARIA DA VEIGA, Paulo Afonso e FRANCISCO NETO, Antonio. Analytic binding energies for two-Baryon bound states in 2 + 1 strongly coupled lattice QCD with two-flavors. Communications in Mathematical Physics, v. 321, n. 1, p. 249\2013282, 2013Tradução . . Disponível em: https://doi.org/10.1007/s00220-013-1688-z. Acesso em: 27 jun. 2025.
    • APA

      O'Carroll, M., Faria da Veiga, P. A., & Francisco Neto, A. (2013). Analytic binding energies for two-Baryon bound states in 2 + 1 strongly coupled lattice QCD with two-flavors. Communications in Mathematical Physics, 321( 1), 249\2013282. doi:10.1007/s00220-013-1688-z
    • NLM

      O'Carroll M, Faria da Veiga PA, Francisco Neto A. Analytic binding energies for two-Baryon bound states in 2 + 1 strongly coupled lattice QCD with two-flavors [Internet]. Communications in Mathematical Physics. 2013 ; 321( 1): 249\2013282.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-013-1688-z
    • Vancouver

      O'Carroll M, Faria da Veiga PA, Francisco Neto A. Analytic binding energies for two-Baryon bound states in 2 + 1 strongly coupled lattice QCD with two-flavors [Internet]. Communications in Mathematical Physics. 2013 ; 321( 1): 249\2013282.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-013-1688-z
  • Fonte: Communications in Mathematical Physics. Unidade: ICMC

    Assuntos: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERTZ, Federico Rodriguez et al. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Communications in Mathematical Physics, v. 306, n. 1, p. 35-49, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00220-011-1275-0. Acesso em: 27 jun. 2025.
    • APA

      Hertz, F. R., Hertz, M. A. R., Tahzibi, A., & Ures, R. (2011). Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Communications in Mathematical Physics, 306( 1), 35-49. doi:10.1007/s00220-011-1275-0
    • NLM

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces [Internet]. Communications in Mathematical Physics. 2011 ; 306( 1): 35-49.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-011-1275-0
    • Vancouver

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces [Internet]. Communications in Mathematical Physics. 2011 ; 306( 1): 35-49.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-011-1275-0
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SAGHIN, Radu e SUN, Wenxiang e VARGAS, Edson. On Dirac physical measures for transitive flows. Communications in Mathematical Physics, v. 298, n. 3, p. 741-756, 2010Tradução . . Disponível em: https://doi.org/10.1007/s00220-010-1077-9. Acesso em: 27 jun. 2025.
    • APA

      Saghin, R., Sun, W., & Vargas, E. (2010). On Dirac physical measures for transitive flows. Communications in Mathematical Physics, 298( 3), 741-756. doi:10.1007/s00220-010-1077-9
    • NLM

      Saghin R, Sun W, Vargas E. On Dirac physical measures for transitive flows [Internet]. Communications in Mathematical Physics. 2010 ; 298( 3): 741-756.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-010-1077-9
    • Vancouver

      Saghin R, Sun W, Vargas E. On Dirac physical measures for transitive flows [Internet]. Communications in Mathematical Physics. 2010 ; 298( 3): 741-756.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-010-1077-9
  • Fonte: Communications in Mathematical Physics. Unidade: ICMC

    Assuntos: TOPOLOGIA ALGÉBRICA, GEOMETRIA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SPREAFICO, Mauro Flávio e ZERBINI, S. Spectral analysis and zeta determinant on the deformed spheres. Communications in Mathematical Physics, v. 273, n. 3, p. 677-704, 2007Tradução . . Disponível em: https://doi.org/10.1007/s00220-007-0229-z. Acesso em: 27 jun. 2025.
    • APA

      Spreafico, M. F., & Zerbini, S. (2007). Spectral analysis and zeta determinant on the deformed spheres. Communications in Mathematical Physics, 273( 3), 677-704. doi:10.1007/s00220-007-0229-z
    • NLM

      Spreafico MF, Zerbini S. Spectral analysis and zeta determinant on the deformed spheres [Internet]. Communications in Mathematical Physics. 2007 ; 273( 3): 677-704.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-007-0229-z
    • Vancouver

      Spreafico MF, Zerbini S. Spectral analysis and zeta determinant on the deformed spheres [Internet]. Communications in Mathematical Physics. 2007 ; 273( 3): 677-704.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-007-0229-z
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: TEORIA DA REPRESENTAÇÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIMITROV, Ivan e FUTORNY, Vyacheslav e PENKOV, Ivan. A reduction theorem for highest weight modules over toroidal Lie algebras. Communications in Mathematical Physics, v. 250, n. 1, p. 47-68, 2004Tradução . . Disponível em: https://doi.org/10.1007/s00220-004-1142-3. Acesso em: 27 jun. 2025.
    • APA

      Dimitrov, I., Futorny, V., & Penkov, I. (2004). A reduction theorem for highest weight modules over toroidal Lie algebras. Communications in Mathematical Physics, 250( 1), 47-68. doi:10.1007/s00220-004-1142-3
    • NLM

      Dimitrov I, Futorny V, Penkov I. A reduction theorem for highest weight modules over toroidal Lie algebras [Internet]. Communications in Mathematical Physics. 2004 ; 250( 1): 47-68.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-004-1142-3
    • Vancouver

      Dimitrov I, Futorny V, Penkov I. A reduction theorem for highest weight modules over toroidal Lie algebras [Internet]. Communications in Mathematical Physics. 2004 ; 250( 1): 47-68.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-004-1142-3
  • Fonte: Communications in Mathematical Physics. Unidade: ICMC

    Assunto: FÍSICA MATEMÁTICA

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA DA VEIGA, Paulo Afonso e O'CARROLL, Michael e SCHOR, Ricardo. Existence of baryons, baryon spectrum and mass splitting in strong coupling lattice QCD. Communications in Mathematical Physics, v. 245, p. 383-406, 2004Tradução . . Acesso em: 27 jun. 2025.
    • APA

      Faria da Veiga, P. A., O'Carroll, M., & Schor, R. (2004). Existence of baryons, baryon spectrum and mass splitting in strong coupling lattice QCD. Communications in Mathematical Physics, 245, 383-406.
    • NLM

      Faria da Veiga PA, O'Carroll M, Schor R. Existence of baryons, baryon spectrum and mass splitting in strong coupling lattice QCD. Communications in Mathematical Physics. 2004 ; 245 383-406.[citado 2025 jun. 27 ]
    • Vancouver

      Faria da Veiga PA, O'Carroll M, Schor R. Existence of baryons, baryon spectrum and mass splitting in strong coupling lattice QCD. Communications in Mathematical Physics. 2004 ; 245 383-406.[citado 2025 jun. 27 ]
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: RELATIVIDADE (FÍSICA)

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto et al. New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court. Communications in Mathematical Physics, v. 235, n. 3, p. 545-563, 2003Tradução . . Disponível em: https://doi.org/10.1007/s00220-003-0793-9. Acesso em: 27 jun. 2025.
    • APA

      Giambó, R., Giannoni, F., Magli, G., & Piccione, P. (2003). New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court. Communications in Mathematical Physics, 235( 3), 545-563. doi:10.1007/s00220-003-0793-9
    • NLM

      Giambó R, Giannoni F, Magli G, Piccione P. New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court [Internet]. Communications in Mathematical Physics. 2003 ; 235( 3): 545-563.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-003-0793-9
    • Vancouver

      Giambó R, Giannoni F, Magli G, Piccione P. New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court [Internet]. Communications in Mathematical Physics. 2003 ; 235( 3): 545-563.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s00220-003-0793-9
  • Fonte: Communications in Mathematical Physics. Unidade: ICMC

    Assunto: FÍSICA MATEMÁTICA

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA DA VEIGA, Paulo Afonso et al. Spectral analysis of weakly coupled stochastic lattice ginzburg-landau models. Communications in Mathematical Physics, v. 220, p. 377-402, 2001Tradução . . Acesso em: 27 jun. 2025.
    • APA

      Faria da Veiga, P. A., O'Carroll, M., Pereira, E., & Schor, R. (2001). Spectral analysis of weakly coupled stochastic lattice ginzburg-landau models. Communications in Mathematical Physics, 220, 377-402.
    • NLM

      Faria da Veiga PA, O'Carroll M, Pereira E, Schor R. Spectral analysis of weakly coupled stochastic lattice ginzburg-landau models. Communications in Mathematical Physics. 2001 ; 220 377-402.[citado 2025 jun. 27 ]
    • Vancouver

      Faria da Veiga PA, O'Carroll M, Pereira E, Schor R. Spectral analysis of weakly coupled stochastic lattice ginzburg-landau models. Communications in Mathematical Physics. 2001 ; 220 377-402.[citado 2025 jun. 27 ]
  • Fonte: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARATA, João Carlos Alves e NILL, F. Dyonic sectors and interwiner connections in 2+1-dimensional lattice Z(N)-Higgs models. Communications in Mathematical Physics, v. 191, n. 2, p. 409-466, 1998Tradução . . Acesso em: 27 jun. 2025.
    • APA

      Barata, J. C. A., & Nill, F. (1998). Dyonic sectors and interwiner connections in 2+1-dimensional lattice Z(N)-Higgs models. Communications in Mathematical Physics, 191( 2), 409-466.
    • NLM

      Barata JCA, Nill F. Dyonic sectors and interwiner connections in 2+1-dimensional lattice Z(N)-Higgs models. Communications in Mathematical Physics. 1998 ; 191( 2): 409-466.[citado 2025 jun. 27 ]
    • Vancouver

      Barata JCA, Nill F. Dyonic sectors and interwiner connections in 2+1-dimensional lattice Z(N)-Higgs models. Communications in Mathematical Physics. 1998 ; 191( 2): 409-466.[citado 2025 jun. 27 ]
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta. On the stability of double homoclinic loops. Communications in Mathematical Physics, v. 184, p. 251-272, 1997Tradução . . Disponível em: https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf. Acesso em: 27 jun. 2025.
    • APA

      Ragazzo, C. G. (1997). On the stability of double homoclinic loops. Communications in Mathematical Physics, 184, 251-272. Recuperado de https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf
    • NLM

      Ragazzo CG. On the stability of double homoclinic loops [Internet]. Communications in Mathematical Physics. 1997 ; 184 251-272.[citado 2025 jun. 27 ] Available from: https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf
    • Vancouver

      Ragazzo CG. On the stability of double homoclinic loops [Internet]. Communications in Mathematical Physics. 1997 ; 184 251-272.[citado 2025 jun. 27 ] Available from: https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fabio e MASIELLO, Antonio e PICCIONE, Paolo. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results. Communications in Mathematical Physics, v. 187, p. 375-415, 1997Tradução . . Disponível em: https://doi.org/10.1007/s002200050141. Acesso em: 27 jun. 2025.
    • APA

      Giannoni, F., Masiello, A., & Piccione, P. (1997). A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results. Communications in Mathematical Physics, 187, 375-415. doi:10.1007/s002200050141
    • NLM

      Giannoni F, Masiello A, Piccione P. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results [Internet]. Communications in Mathematical Physics. 1997 ; 187 375-415.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s002200050141
    • Vancouver

      Giannoni F, Masiello A, Piccione P. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results [Internet]. Communications in Mathematical Physics. 1997 ; 187 375-415.[citado 2025 jun. 27 ] Available from: https://doi.org/10.1007/s002200050141
  • Fonte: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA MATEMÁTICA

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARATA, João Carlos Alves e NILL, F. Electrically and magnetically charged states and particles in the '2+1-DIMENSIONAL' 'Z IND.N-HIGGS' gauge model. Communications in Mathematical Physics, v. 171, p. 27-86, 1995Tradução . . Acesso em: 27 jun. 2025.
    • APA

      Barata, J. C. A., & Nill, F. (1995). Electrically and magnetically charged states and particles in the '2+1-DIMENSIONAL' 'Z IND.N-HIGGS' gauge model. Communications in Mathematical Physics, 171, 27-86.
    • NLM

      Barata JCA, Nill F. Electrically and magnetically charged states and particles in the '2+1-DIMENSIONAL' 'Z IND.N-HIGGS' gauge model. Communications in Mathematical Physics. 1995 ;171 27-86.[citado 2025 jun. 27 ]
    • Vancouver

      Barata JCA, Nill F. Electrically and magnetically charged states and particles in the '2+1-DIMENSIONAL' 'Z IND.N-HIGGS' gauge model. Communications in Mathematical Physics. 1995 ;171 27-86.[citado 2025 jun. 27 ]

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025