On the stability of double homoclinic loops (1997)
- Autor:
- Autor USP: RAGAZZO, CLODOALDO GROTTA - IME
- Unidade: IME
- Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS; TEORIA QUALITATIVA
- Language: Inglês
- Source:
- Título: Communications in Mathematical Physics
- ISSN: 0010-3616
- Volume/Número/Paginação/Ano: v. 184, p. 251-272, 1997
-
ABNT
RAGAZZO, Clodoaldo Grotta. On the stability of double homoclinic loops. Communications in Mathematical Physics, v. 184, p. 251-272, 1997Tradução . . Disponível em: https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf. Acesso em: 28 dez. 2025. -
APA
Ragazzo, C. G. (1997). On the stability of double homoclinic loops. Communications in Mathematical Physics, 184, 251-272. Recuperado de https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf -
NLM
Ragazzo CG. On the stability of double homoclinic loops [Internet]. Communications in Mathematical Physics. 1997 ; 184 251-272.[citado 2025 dez. 28 ] Available from: https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf -
Vancouver
Ragazzo CG. On the stability of double homoclinic loops [Internet]. Communications in Mathematical Physics. 1997 ; 184 251-272.[citado 2025 dez. 28 ] Available from: https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf - Localized solutions for Δu=−αu−u3 in strip domains and homoclinic orbits of finite dimensional approximations
- On the force and torque on systems of rigid bodies: A remark on an integral formula due to Howe
- Scalar Autonomous Second Order Ordinary Differential Equations
- An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle
- On the motion of two-dimensional vortices with mass
- Chaos and integrability in a nonlinear wave equation
- On the interplay between vortices and harmonic flows: Hodge decomposition of Euler’s equations in 2d
- Equivalence between simple multilayered and homogeneous laboratory-based rheological models in planetary science
- The effects of deformation inertia (kinetic energy) in the orbital and spin evolution of close-in bodies
- Irregular dynamics and homoclinic orbits to Hamiltoniansaddle-centers
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
