The effects of deformation inertia (kinetic energy) in the orbital and spin evolution of close-in bodies (2018)
- Authors:
- Autor USP: RAGAZZO, CLODOALDO GROTTA - IME
- Unidade: IME
- DOI: 10.1007/s10569-018-9847-3
- Assunto: MECÂNICA DOS FLUÍDOS
- Keywords: Tides; Dissipative forces; Deformation inertia; Planetary systems
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Celestial Mechanics and Dynamical Astronomy
- ISSN: 0923-2958
- Volume/Número/Paginação/Ano: v. 130, n. 8, p. 1-30, 2018
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
- Licença: other-oa
-
ABNT
CORREIA, A. C. M. e RAGAZZO, Clodoaldo Grotta e RUIZ, L S. The effects of deformation inertia (kinetic energy) in the orbital and spin evolution of close-in bodies. Celestial Mechanics and Dynamical Astronomy, v. 130, n. 8, p. 1-30, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10569-018-9847-3. Acesso em: 01 jan. 2026. -
APA
Correia, A. C. M., Ragazzo, C. G., & Ruiz, L. S. (2018). The effects of deformation inertia (kinetic energy) in the orbital and spin evolution of close-in bodies. Celestial Mechanics and Dynamical Astronomy, 130( 8), 1-30. doi:10.1007/s10569-018-9847-3 -
NLM
Correia ACM, Ragazzo CG, Ruiz LS. The effects of deformation inertia (kinetic energy) in the orbital and spin evolution of close-in bodies [Internet]. Celestial Mechanics and Dynamical Astronomy. 2018 ; 130( 8): 1-30.[citado 2026 jan. 01 ] Available from: https://doi.org/10.1007/s10569-018-9847-3 -
Vancouver
Correia ACM, Ragazzo CG, Ruiz LS. The effects of deformation inertia (kinetic energy) in the orbital and spin evolution of close-in bodies [Internet]. Celestial Mechanics and Dynamical Astronomy. 2018 ; 130( 8): 1-30.[citado 2026 jan. 01 ] Available from: https://doi.org/10.1007/s10569-018-9847-3 - Localized solutions for Δu=−αu−u3 in strip domains and homoclinic orbits of finite dimensional approximations
- On the force and torque on systems of rigid bodies: A remark on an integral formula due to Howe
- Scalar Autonomous Second Order Ordinary Differential Equations
- An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle
- On the motion of two-dimensional vortices with mass
- Chaos and integrability in a nonlinear wave equation
- On the interplay between vortices and harmonic flows: Hodge decomposition of Euler’s equations in 2d
- Equivalence between simple multilayered and homogeneous laboratory-based rheological models in planetary science
- Irregular dynamics and homoclinic orbits to Hamiltoniansaddle-centers
- Dynamics of many bodies in a liquid: Added-mass tensor of compounded bodies and systems with a fast oscillating body
Informações sobre o DOI: 10.1007/s10569-018-9847-3 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2897132.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
