Chaos and integrability in a nonlinear wave equation (1994)
- Autor:
- Autor USP: RAGAZZO, CLODOALDO GROTTA - IME
- Unidade: IME
- DOI: 10.1007/bf02219194
- Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS; EQUAÇÕES DIFERENCIAIS ORDINÁRIAS; TEORIA QUALITATIVA; ANÁLISE GLOBAL
- Keywords: Conservative wave equations; Hamiltonian system; transversal homoclinic orbits; integrability
- Language: Inglês
- Source:
- Título: Journal of Dynamics and Differential Equations
- ISSN: 1040-7294
- Volume/Número/Paginação/Ano: v. 6, n. 1, p. 227-244, 1994
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
RAGAZZO, Clodoaldo Grotta. Chaos and integrability in a nonlinear wave equation. Journal of Dynamics and Differential Equations, v. 6, n. 1, p. 227-244, 1994Tradução . . Disponível em: https://doi.org/10.1007/bf02219194. Acesso em: 25 jan. 2026. -
APA
Ragazzo, C. G. (1994). Chaos and integrability in a nonlinear wave equation. Journal of Dynamics and Differential Equations, 6( 1), 227-244. doi:10.1007/bf02219194 -
NLM
Ragazzo CG. Chaos and integrability in a nonlinear wave equation [Internet]. Journal of Dynamics and Differential Equations. 1994 ; 6( 1): 227-244.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/bf02219194 -
Vancouver
Ragazzo CG. Chaos and integrability in a nonlinear wave equation [Internet]. Journal of Dynamics and Differential Equations. 1994 ; 6( 1): 227-244.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/bf02219194 - On the motion of two-dimensional vortices with mass
- An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle
- On the dynamics near resonant equilibria
- Critical number in scattering and escaping problems in classical mechanics
- Dynamics of many bodies in a liquid: Added-mass tensor of compounded bodies and systems with a fast oscillating body
- Scalar Autonomous Second Order Ordinary Differential Equations
- Dynamic mean flow and small-scale interaction through topographic stress
- Stability of homoclinic orbits and diffusion in phase space
- On the stability of some periodic orbits of a new type for twist maps
- Dynamics of an isolated, viscoelastic, self-gravitating body
Informações sobre o DOI: 10.1007/bf02219194 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
