On the interplay between vortices and harmonic flows: Hodge decomposition of Euler’s equations in 2d (2024)
- Authors:
- Autor USP: RAGAZZO, CLODOALDO GROTTA - IME
- Unidade: IME
- DOI: 10.1134/S1560354724020011
- Subjects: VÓRTICES DOS FLUÍDOS; SUPERFÍCIES DE RIEMANN
- Keywords: vortex motion; Riemann surfaces; Hodge decomposition
- Language: Inglês
- Imprenta:
- Source:
- Título: Regular and Chaotic Dynamics
- ISSN: 1560-3547
- Volume/Número/Paginação/Ano: v. 29, p. 241-303, 2024
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
RAGAZZO, Clodoaldo Grotta e GUSTAFSSON, Björn e KOILLER, Jair. On the interplay between vortices and harmonic flows: Hodge decomposition of Euler’s equations in 2d. Regular and Chaotic Dynamics, v. 29, p. 241-303, 2024Tradução . . Disponível em: https://doi.org/10.1134/S1560354724020011. Acesso em: 29 dez. 2025. -
APA
Ragazzo, C. G., Gustafsson, B., & Koiller, J. (2024). On the interplay between vortices and harmonic flows: Hodge decomposition of Euler’s equations in 2d. Regular and Chaotic Dynamics, 29, 241-303. doi:10.1134/S1560354724020011 -
NLM
Ragazzo CG, Gustafsson B, Koiller J. On the interplay between vortices and harmonic flows: Hodge decomposition of Euler’s equations in 2d [Internet]. Regular and Chaotic Dynamics. 2024 ; 29 241-303.[citado 2025 dez. 29 ] Available from: https://doi.org/10.1134/S1560354724020011 -
Vancouver
Ragazzo CG, Gustafsson B, Koiller J. On the interplay between vortices and harmonic flows: Hodge decomposition of Euler’s equations in 2d [Internet]. Regular and Chaotic Dynamics. 2024 ; 29 241-303.[citado 2025 dez. 29 ] Available from: https://doi.org/10.1134/S1560354724020011 - Localized solutions for Δu=−αu−u3 in strip domains and homoclinic orbits of finite dimensional approximations
- On the force and torque on systems of rigid bodies: A remark on an integral formula due to Howe
- Scalar Autonomous Second Order Ordinary Differential Equations
- An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle
- On the motion of two-dimensional vortices with mass
- Chaos and integrability in a nonlinear wave equation
- Equivalence between simple multilayered and homogeneous laboratory-based rheological models in planetary science
- The effects of deformation inertia (kinetic energy) in the orbital and spin evolution of close-in bodies
- Irregular dynamics and homoclinic orbits to Hamiltoniansaddle-centers
- Dynamics of many bodies in a liquid: Added-mass tensor of compounded bodies and systems with a fast oscillating body
Informações sobre o DOI: 10.1134/S1560354724020011 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3218639_-_On_the_interpla... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
