Localized solutions for Δu=−αu−u3 in strip domains and homoclinic orbits of finite dimensional approximations (2001)
- Autor:
- Autor USP: RAGAZZO, CLODOALDO GROTTA - IME
- Unidade: IME
- Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Heidelberg
- Date published: 2001
- Source:
- Título: Computational and Applied Mathematics
- ISSN: 0101-8205
- Volume/Número/Paginação/Ano: v. 20, n. 1-2, p. 221-243, 2001
-
ABNT
RAGAZZO, Clodoaldo Grotta. Localized solutions for Δu=−αu−u3 in strip domains and homoclinic orbits of finite dimensional approximations. Computational and Applied Mathematics, v. 20, n. 1-2, p. 221-243, 2001Tradução . . Acesso em: 28 dez. 2025. -
APA
Ragazzo, C. G. (2001). Localized solutions for Δu=−αu−u3 in strip domains and homoclinic orbits of finite dimensional approximations. Computational and Applied Mathematics, 20( 1-2), 221-243. -
NLM
Ragazzo CG. Localized solutions for Δu=−αu−u3 in strip domains and homoclinic orbits of finite dimensional approximations. Computational and Applied Mathematics. 2001 ; 20( 1-2): 221-243.[citado 2025 dez. 28 ] -
Vancouver
Ragazzo CG. Localized solutions for Δu=−αu−u3 in strip domains and homoclinic orbits of finite dimensional approximations. Computational and Applied Mathematics. 2001 ; 20( 1-2): 221-243.[citado 2025 dez. 28 ] - On the force and torque on systems of rigid bodies: A remark on an integral formula due to Howe
- Scalar Autonomous Second Order Ordinary Differential Equations
- An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle
- On the motion of two-dimensional vortices with mass
- Chaos and integrability in a nonlinear wave equation
- On the interplay between vortices and harmonic flows: Hodge decomposition of Euler’s equations in 2d
- Equivalence between simple multilayered and homogeneous laboratory-based rheological models in planetary science
- The effects of deformation inertia (kinetic energy) in the orbital and spin evolution of close-in bodies
- Irregular dynamics and homoclinic orbits to Hamiltoniansaddle-centers
- Dynamics of many bodies in a liquid: Added-mass tensor of compounded bodies and systems with a fast oscillating body
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
