Filtros : "Communications in Mathematical Physics" Removido: "FÍSICA MATEMÁTICA" Limpar

Filtros



Limitar por data


  • Fonte: Communications in Mathematical Physics. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COATES, Douglas e LUZZATTO, Stefano. Persistent non-statistical dynamics in one-dimensional maps. Communications in Mathematical Physics, v. 405, n. 4, p. 1-34, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00220-024-04957-0. Acesso em: 29 jun. 2025.
    • APA

      Coates, D., & Luzzatto, S. (2024). Persistent non-statistical dynamics in one-dimensional maps. Communications in Mathematical Physics, 405( 4), 1-34. doi:10.1007/s00220-024-04957-0
    • NLM

      Coates D, Luzzatto S. Persistent non-statistical dynamics in one-dimensional maps [Internet]. Communications in Mathematical Physics. 2024 ; 405( 4): 1-34.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-024-04957-0
    • Vancouver

      Coates D, Luzzatto S. Persistent non-statistical dynamics in one-dimensional maps [Internet]. Communications in Mathematical Physics. 2024 ; 405( 4): 1-34.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-024-04957-0
  • Fonte: Communications in Mathematical Physics. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NIJHOUT, Eddie et al. Chaotic behavior in diffusively coupled systems. Communications in Mathematical Physics, v. 401, p. 2715-2756, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00220-023-04699-5. Acesso em: 29 jun. 2025.
    • APA

      Nijhout, E., Pereira, T., Queiroz, F. C. de, & Turaev, D. (2023). Chaotic behavior in diffusively coupled systems. Communications in Mathematical Physics, 401, 2715-2756. doi:10.1007/s00220-023-04699-5
    • NLM

      Nijhout E, Pereira T, Queiroz FC de, Turaev D. Chaotic behavior in diffusively coupled systems [Internet]. Communications in Mathematical Physics. 2023 ; 401 2715-2756.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-023-04699-5
    • Vancouver

      Nijhout E, Pereira T, Queiroz FC de, Turaev D. Chaotic behavior in diffusively coupled systems [Internet]. Communications in Mathematical Physics. 2023 ; 401 2715-2756.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-023-04699-5
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assuntos: SISTEMAS HAMILTONIANOS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JÄGER, Tobias e KOROPECKI, Andres e TAL, Fábio Armando. On the onset of diffusion in the kicked Harper model. Communications in Mathematical Physics, v. 383, p. 953-980, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-021-03995-2. Acesso em: 29 jun. 2025.
    • APA

      Jäger, T., Koropecki, A., & Tal, F. A. (2021). On the onset of diffusion in the kicked Harper model. Communications in Mathematical Physics, 383, 953-980. doi:10.1007/s00220-021-03995-2
    • NLM

      Jäger T, Koropecki A, Tal FA. On the onset of diffusion in the kicked Harper model [Internet]. Communications in Mathematical Physics. 2021 ; 383 953-980.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-021-03995-2
    • Vancouver

      Jäger T, Koropecki A, Tal FA. On the onset of diffusion in the kicked Harper model [Internet]. Communications in Mathematical Physics. 2021 ; 383 953-980.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-021-03995-2
  • Fonte: Communications in Mathematical Physics. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALADI, Viviane e SMANIA, Daniel. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters. Communications in Mathematical Physics, v. 385, n. 3, p. 1957-2007, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-021-04015-z. Acesso em: 29 jun. 2025.
    • APA

      Baladi, V., & Smania, D. (2021). Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters. Communications in Mathematical Physics, 385( 3), 1957-2007. doi:10.1007/s00220-021-04015-z
    • NLM

      Baladi V, Smania D. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters [Internet]. Communications in Mathematical Physics. 2021 ; 385( 3): 1957-2007.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-021-04015-z
    • Vancouver

      Baladi V, Smania D. Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters [Internet]. Communications in Mathematical Physics. 2021 ; 385( 3): 1957-2007.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-021-04015-z
  • Fonte: Communications in Mathematical Physics. Unidade: IF

    Assuntos: MECÂNICA QUÂNTICA, SIMETRIA (FÍSICA DE PARTÍCULAS), SISTEMAS HAMILTONIANOS

    Versão PublicadaAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZA, Nelson Javier Buitrago e BRU, J. -B. e DE SIQUEIRA PEDRA, Walter. Decay of complex-time determinantal and pfaffian correlation functionals in lattices. Communications in Mathematical Physics, v. 360, n. ju 2018, p. 715-726, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00220-018-3121-0. Acesso em: 29 jun. 2025.
    • APA

      Aza, N. J. B., Bru, J. -B., & De Siqueira Pedra, W. (2018). Decay of complex-time determinantal and pfaffian correlation functionals in lattices. Communications in Mathematical Physics, 360( ju 2018), 715-726. doi:10.1007/s00220-018-3121-0
    • NLM

      Aza NJB, Bru J-B, De Siqueira Pedra W. Decay of complex-time determinantal and pfaffian correlation functionals in lattices [Internet]. Communications in Mathematical Physics. 2018 ; 360( ju 2018): 715-726.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-018-3121-0
    • Vancouver

      Aza NJB, Bru J-B, De Siqueira Pedra W. Decay of complex-time determinantal and pfaffian correlation functionals in lattices [Internet]. Communications in Mathematical Physics. 2018 ; 360( ju 2018): 715-726.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-018-3121-0
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GRANTCHAROV, Dimitar e RAMÍREZ, Luis Enrique. New singular Gelfand–Tsetlin gl(n)-modules of index 2. Communications in Mathematical Physics, v. 355, n. 3, p. 1209–1241, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00220-017-2967-x. Acesso em: 29 jun. 2025.
    • APA

      Futorny, V., Grantcharov, D., & Ramírez, L. E. (2017). New singular Gelfand–Tsetlin gl(n)-modules of index 2. Communications in Mathematical Physics, 355( 3), 1209–1241. doi:10.1007/s00220-017-2967-x
    • NLM

      Futorny V, Grantcharov D, Ramírez LE. New singular Gelfand–Tsetlin gl(n)-modules of index 2 [Internet]. Communications in Mathematical Physics. 2017 ; 355( 3): 1209–1241.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-017-2967-x
    • Vancouver

      Futorny V, Grantcharov D, Ramírez LE. New singular Gelfand–Tsetlin gl(n)-modules of index 2 [Internet]. Communications in Mathematical Physics. 2017 ; 355( 3): 1209–1241.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-017-2967-x
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assuntos: MECÂNICA ESTATÍSTICA, MODELO DE ISING

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo et al. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields. Communications in Mathematical Physics, v. 337, n. 1, p. 41-53, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00220-014-2268-6. Acesso em: 29 jun. 2025.
    • APA

      Bissacot, R., Cassandro, M., Cioletti, L., & Presutti, E. (2015). Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields. Communications in Mathematical Physics, 337( 1), 41-53. doi:10.1007/s00220-014-2268-6
    • NLM

      Bissacot R, Cassandro M, Cioletti L, Presutti E. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields [Internet]. Communications in Mathematical Physics. 2015 ; 337( 1): 41-53.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-014-2268-6
    • Vancouver

      Bissacot R, Cassandro M, Cioletti L, Presutti E. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields [Internet]. Communications in Mathematical Physics. 2015 ; 337( 1): 41-53.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-014-2268-6
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SAGHIN, Radu e VARGAS, Edson. Invariant measures for cherry flows. Communications in Mathematical Physics, v. 317, n. 1, p. 55-67, 2013Tradução . . Disponível em: https://doi.org/10.1007/s00220-012-1611-z. Acesso em: 29 jun. 2025.
    • APA

      Saghin, R., & Vargas, E. (2013). Invariant measures for cherry flows. Communications in Mathematical Physics, 317( 1), 55-67. doi:10.1007/s00220-012-1611-z
    • NLM

      Saghin R, Vargas E. Invariant measures for cherry flows [Internet]. Communications in Mathematical Physics. 2013 ; 317( 1): 55-67.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-012-1611-z
    • Vancouver

      Saghin R, Vargas E. Invariant measures for cherry flows [Internet]. Communications in Mathematical Physics. 2013 ; 317( 1): 55-67.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-012-1611-z
  • Fonte: Communications in Mathematical Physics. Unidade: ICMC

    Assuntos: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERTZ, Federico Rodriguez et al. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Communications in Mathematical Physics, v. 306, n. 1, p. 35-49, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00220-011-1275-0. Acesso em: 29 jun. 2025.
    • APA

      Hertz, F. R., Hertz, M. A. R., Tahzibi, A., & Ures, R. (2011). Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Communications in Mathematical Physics, 306( 1), 35-49. doi:10.1007/s00220-011-1275-0
    • NLM

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces [Internet]. Communications in Mathematical Physics. 2011 ; 306( 1): 35-49.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-011-1275-0
    • Vancouver

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces [Internet]. Communications in Mathematical Physics. 2011 ; 306( 1): 35-49.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-011-1275-0
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SAGHIN, Radu e SUN, Wenxiang e VARGAS, Edson. On Dirac physical measures for transitive flows. Communications in Mathematical Physics, v. 298, n. 3, p. 741-756, 2010Tradução . . Disponível em: https://doi.org/10.1007/s00220-010-1077-9. Acesso em: 29 jun. 2025.
    • APA

      Saghin, R., Sun, W., & Vargas, E. (2010). On Dirac physical measures for transitive flows. Communications in Mathematical Physics, 298( 3), 741-756. doi:10.1007/s00220-010-1077-9
    • NLM

      Saghin R, Sun W, Vargas E. On Dirac physical measures for transitive flows [Internet]. Communications in Mathematical Physics. 2010 ; 298( 3): 741-756.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-010-1077-9
    • Vancouver

      Saghin R, Sun W, Vargas E. On Dirac physical measures for transitive flows [Internet]. Communications in Mathematical Physics. 2010 ; 298( 3): 741-756.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-010-1077-9
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: RELATIVIDADE (FÍSICA)

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Genericity of nondegeneracy for light rays in stationary spacetimes. Communications in Mathematical Physics, v. 287, n. 3, p. 903-923, 2009Tradução . . Disponível em: https://doi.org/10.1007/s00220-009-0742-3. Acesso em: 29 jun. 2025.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2009). Genericity of nondegeneracy for light rays in stationary spacetimes. Communications in Mathematical Physics, 287( 3), 903-923. doi:10.1007/s00220-009-0742-3
    • NLM

      Giambó R, Giannoni F, Piccione P. Genericity of nondegeneracy for light rays in stationary spacetimes [Internet]. Communications in Mathematical Physics. 2009 ; 287( 3): 903-923.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-009-0742-3
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Genericity of nondegeneracy for light rays in stationary spacetimes [Internet]. Communications in Mathematical Physics. 2009 ; 287( 3): 903-923.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-009-0742-3
  • Fonte: Communications in Mathematical Physics. Unidade: ICMC

    Assuntos: TOPOLOGIA ALGÉBRICA, GEOMETRIA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SPREAFICO, Mauro Flávio e ZERBINI, S. Spectral analysis and zeta determinant on the deformed spheres. Communications in Mathematical Physics, v. 273, n. 3, p. 677-704, 2007Tradução . . Disponível em: https://doi.org/10.1007/s00220-007-0229-z. Acesso em: 29 jun. 2025.
    • APA

      Spreafico, M. F., & Zerbini, S. (2007). Spectral analysis and zeta determinant on the deformed spheres. Communications in Mathematical Physics, 273( 3), 677-704. doi:10.1007/s00220-007-0229-z
    • NLM

      Spreafico MF, Zerbini S. Spectral analysis and zeta determinant on the deformed spheres [Internet]. Communications in Mathematical Physics. 2007 ; 273( 3): 677-704.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-007-0229-z
    • Vancouver

      Spreafico MF, Zerbini S. Spectral analysis and zeta determinant on the deformed spheres [Internet]. Communications in Mathematical Physics. 2007 ; 273( 3): 677-704.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-007-0229-z
  • Fonte: Communications in Mathematical Physics. Unidade: IF

    Assuntos: EQUAÇÃO DE SCHRODINGER, SISTEMAS HAMILTONIANOS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GENTILE, Guido e CORTEZ, Daniel Augusto e BARATA, João Carlos Alves. Stability for quasi-periodically perturbed Hill’s equations. Communications in Mathematical Physics, v. 260, n. 2, p. 403-443, 2005Tradução . . Disponível em: http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget=. Acesso em: 29 jun. 2025.
    • APA

      Gentile, G., Cortez, D. A., & Barata, J. C. A. (2005). Stability for quasi-periodically perturbed Hill’s equations. Communications in Mathematical Physics, 260( 2), 403-443. Recuperado de http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget=
    • NLM

      Gentile G, Cortez DA, Barata JCA. Stability for quasi-periodically perturbed Hill’s equations [Internet]. Communications in Mathematical Physics. 2005 ; 260( 2): 403-443.[citado 2025 jun. 29 ] Available from: http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget=
    • Vancouver

      Gentile G, Cortez DA, Barata JCA. Stability for quasi-periodically perturbed Hill’s equations [Internet]. Communications in Mathematical Physics. 2005 ; 260( 2): 403-443.[citado 2025 jun. 29 ] Available from: http://www.springerlink.com/media/bn42d3kpxh0unvb99evl/contributions/w/2/4/9/w249g424668476m6.pdf" targget=
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS HAMILTONIANOS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael e ROMERO, Sandro Vieira. Covariant Poisson brackets in geometric field theory. Communications in Mathematical Physics, v. 256, n. 2, p. 375-410, 2005Tradução . . Disponível em: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8. Acesso em: 29 jun. 2025.
    • APA

      Forger, F. M., & Romero, S. V. (2005). Covariant Poisson brackets in geometric field theory. Communications in Mathematical Physics, 256( 2), 375-410. Recuperado de https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
    • NLM

      Forger FM, Romero SV. Covariant Poisson brackets in geometric field theory [Internet]. Communications in Mathematical Physics. 2005 ; 256( 2): 375-410.[citado 2025 jun. 29 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
    • Vancouver

      Forger FM, Romero SV. Covariant Poisson brackets in geometric field theory [Internet]. Communications in Mathematical Physics. 2005 ; 256( 2): 375-410.[citado 2025 jun. 29 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: TEORIA DA REPRESENTAÇÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIMITROV, Ivan e FUTORNY, Vyacheslav e PENKOV, Ivan. A reduction theorem for highest weight modules over toroidal Lie algebras. Communications in Mathematical Physics, v. 250, n. 1, p. 47-68, 2004Tradução . . Disponível em: https://doi.org/10.1007/s00220-004-1142-3. Acesso em: 29 jun. 2025.
    • APA

      Dimitrov, I., Futorny, V., & Penkov, I. (2004). A reduction theorem for highest weight modules over toroidal Lie algebras. Communications in Mathematical Physics, 250( 1), 47-68. doi:10.1007/s00220-004-1142-3
    • NLM

      Dimitrov I, Futorny V, Penkov I. A reduction theorem for highest weight modules over toroidal Lie algebras [Internet]. Communications in Mathematical Physics. 2004 ; 250( 1): 47-68.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-004-1142-3
    • Vancouver

      Dimitrov I, Futorny V, Penkov I. A reduction theorem for highest weight modules over toroidal Lie algebras [Internet]. Communications in Mathematical Physics. 2004 ; 250( 1): 47-68.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-004-1142-3
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: RELATIVIDADE (FÍSICA)

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto et al. New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court. Communications in Mathematical Physics, v. 235, n. 3, p. 545-563, 2003Tradução . . Disponível em: https://doi.org/10.1007/s00220-003-0793-9. Acesso em: 29 jun. 2025.
    • APA

      Giambó, R., Giannoni, F., Magli, G., & Piccione, P. (2003). New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court. Communications in Mathematical Physics, 235( 3), 545-563. doi:10.1007/s00220-003-0793-9
    • NLM

      Giambó R, Giannoni F, Magli G, Piccione P. New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court [Internet]. Communications in Mathematical Physics. 2003 ; 235( 3): 545-563.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-003-0793-9
    • Vancouver

      Giambó R, Giannoni F, Magli G, Piccione P. New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court [Internet]. Communications in Mathematical Physics. 2003 ; 235( 3): 545-563.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s00220-003-0793-9
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e SCHONMANN, Roberto Henrique e SIDORAVICIUS, Vadlas. Stretched exponential fixation in stochastic ising models at zero temperature. Communications in Mathematical Physics, v. 228, n. 3, p. 495-518, 2002Tradução . . Disponível em: https://doi.org/10.1007/s002200200658. Acesso em: 29 jun. 2025.
    • APA

      Fontes, L. R., Schonmann, R. H., & Sidoravicius, V. (2002). Stretched exponential fixation in stochastic ising models at zero temperature. Communications in Mathematical Physics, 228( 3), 495-518. doi:10.1007/s002200200658
    • NLM

      Fontes LR, Schonmann RH, Sidoravicius V. Stretched exponential fixation in stochastic ising models at zero temperature [Internet]. Communications in Mathematical Physics. 2002 ; 228( 3): 495-518.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s002200200658
    • Vancouver

      Fontes LR, Schonmann RH, Sidoravicius V. Stretched exponential fixation in stochastic ising models at zero temperature [Internet]. Communications in Mathematical Physics. 2002 ; 228( 3): 495-518.[citado 2025 jun. 29 ] Available from: https://doi.org/10.1007/s002200200658
  • Fonte: Communications in Mathematical Physics. Unidade: IF

    Assunto: EQUAÇÕES DIFERENCIAIS

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUIDI, Leonardo F e MARCHETTI, Domingos H. U. Renormalization group flow on the two-dimensional hierarchical Coulomb gas. Communications in Mathematical Physics, v. 219, n. 3, p. 671-702, 2001Tradução . . Acesso em: 29 jun. 2025.
    • APA

      Guidi, L. F., & Marchetti, D. H. U. (2001). Renormalization group flow on the two-dimensional hierarchical Coulomb gas. Communications in Mathematical Physics, 219( 3), 671-702.
    • NLM

      Guidi LF, Marchetti DHU. Renormalization group flow on the two-dimensional hierarchical Coulomb gas. Communications in Mathematical Physics. 2001 ; 219( 3): 671-702.[citado 2025 jun. 29 ]
    • Vancouver

      Guidi LF, Marchetti DHU. Renormalization group flow on the two-dimensional hierarchical Coulomb gas. Communications in Mathematical Physics. 2001 ; 219( 3): 671-702.[citado 2025 jun. 29 ]
  • Fonte: Communications in Mathematical Physics. Unidade: IF

    Assunto: FÍSICA

    Como citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARATA, João Carlos Alves e NILL, F. Dyonic sectors and interwiner connections in 2+1-dimensional lattice Z(N)-Higgs models. Communications in Mathematical Physics, v. 191, n. 2, p. 409-466, 1998Tradução . . Acesso em: 29 jun. 2025.
    • APA

      Barata, J. C. A., & Nill, F. (1998). Dyonic sectors and interwiner connections in 2+1-dimensional lattice Z(N)-Higgs models. Communications in Mathematical Physics, 191( 2), 409-466.
    • NLM

      Barata JCA, Nill F. Dyonic sectors and interwiner connections in 2+1-dimensional lattice Z(N)-Higgs models. Communications in Mathematical Physics. 1998 ; 191( 2): 409-466.[citado 2025 jun. 29 ]
    • Vancouver

      Barata JCA, Nill F. Dyonic sectors and interwiner connections in 2+1-dimensional lattice Z(N)-Higgs models. Communications in Mathematical Physics. 1998 ; 191( 2): 409-466.[citado 2025 jun. 29 ]
  • Fonte: Communications in Mathematical Physics. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta. On the stability of double homoclinic loops. Communications in Mathematical Physics, v. 184, p. 251-272, 1997Tradução . . Disponível em: https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf. Acesso em: 29 jun. 2025.
    • APA

      Ragazzo, C. G. (1997). On the stability of double homoclinic loops. Communications in Mathematical Physics, 184, 251-272. Recuperado de https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf
    • NLM

      Ragazzo CG. On the stability of double homoclinic loops [Internet]. Communications in Mathematical Physics. 1997 ; 184 251-272.[citado 2025 jun. 29 ] Available from: https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf
    • Vancouver

      Ragazzo CG. On the stability of double homoclinic loops [Internet]. Communications in Mathematical Physics. 1997 ; 184 251-272.[citado 2025 jun. 29 ] Available from: https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025