Filtros : "Indexado no Scopus" "LIANG, ZHAO" "ICMC" Removidos: "Indexado no MathSciNet" "Financiamento AFOSR" "Português" Limpar

Filtros



Refine with date range


  • Source: IEEE Transactions on Network Science and Engineering. Unidades: FFCLRP, ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, DESCOBERTA DE CONHECIMENTO, ALGORITMOS ÚTEIS E ESPECÍFICOS, REDES COMPLEXAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VALEJO, Alan Demetrius Baria et al. Coarsening algorithm based on multi-label propagation for knowledge discovery in bipartite networks. IEEE Transactions on Network Science and Engineering, v. 11, n. 2, p. 1799-1809, 2024Tradução . . Disponível em: https://doi.org/10.1109/TNSE.2023.3331655. Acesso em: 14 nov. 2024.
    • APA

      Valejo, A. D. B., Althoff, P. E., Faleiros, T. de P., Rocha Filho, G. P., Yu-Tao, Z., Jianglong, Y., et al. (2024). Coarsening algorithm based on multi-label propagation for knowledge discovery in bipartite networks. IEEE Transactions on Network Science and Engineering, 11( 2), 1799-1809. doi:10.1109/TNSE.2023.3331655
    • NLM

      Valejo ADB, Althoff PE, Faleiros T de P, Rocha Filho GP, Yu-Tao Z, Jianglong Y, Weiguang L, Liang Z. Coarsening algorithm based on multi-label propagation for knowledge discovery in bipartite networks [Internet]. IEEE Transactions on Network Science and Engineering. 2024 ; 11( 2): 1799-1809.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1109/TNSE.2023.3331655
    • Vancouver

      Valejo ADB, Althoff PE, Faleiros T de P, Rocha Filho GP, Yu-Tao Z, Jianglong Y, Weiguang L, Liang Z. Coarsening algorithm based on multi-label propagation for knowledge discovery in bipartite networks [Internet]. IEEE Transactions on Network Science and Engineering. 2024 ; 11( 2): 1799-1809.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1109/TNSE.2023.3331655
  • Source: Journal of Computational Science. Unidades: FFCLRP, ICMC

    Subjects: REDES COMPLEXAS, RECONHECIMENTO DE IMAGEM, RADIOGRAFIA, COVID-19

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JIANGLONG, Yan et al. Characterizing data patterns with core-periphery network modeling. Journal of Computational Science, v. 66, n. Ja 2023, p. 1-13, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jocs.2022.101912. Acesso em: 14 nov. 2024.
    • APA

      Jianglong, Y., Anghinoni, L., Yu-Tao, Z., Weiguang, L., Gen, L., Qiusheng, Z., & Liang, Z. (2023). Characterizing data patterns with core-periphery network modeling. Journal of Computational Science, 66( Ja 2023), 1-13. doi:10.1016/j.jocs.2022.101912
    • NLM

      Jianglong Y, Anghinoni L, Yu-Tao Z, Weiguang L, Gen L, Qiusheng Z, Liang Z. Characterizing data patterns with core-periphery network modeling [Internet]. Journal of Computational Science. 2023 ; 66( Ja 2023): 1-13.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.jocs.2022.101912
    • Vancouver

      Jianglong Y, Anghinoni L, Yu-Tao Z, Weiguang L, Gen L, Qiusheng Z, Liang Z. Characterizing data patterns with core-periphery network modeling [Internet]. Journal of Computational Science. 2023 ; 66( Ja 2023): 1-13.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.jocs.2022.101912
  • Source: PLoS ONE. Unidades: FFCLRP, ICMC

    Subjects: REDES COMPLEXAS, RECONHECIMENTO DE IMAGEM, DIAGNÓSTICO POR COMPUTADOR, TECNOLOGIAS DA SAÚDE, RADIOGRAFIA, COVID-19

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WEIGUANG, Liu et al. Complex network-based classification of radiographic images for COVID-19 diagnosis. PLoS ONE, v. 18, n. 9, p. 1-26, 2023Tradução . . Disponível em: https://doi.org/10.1371/journal.pone.0290968. Acesso em: 14 nov. 2024.
    • APA

      Weiguang, L., Rodrigues, R. D., Jianglong, Y., Yu-Tao, Z., Pereira, E. J. de F., Gen, L., et al. (2023). Complex network-based classification of radiographic images for COVID-19 diagnosis. PLoS ONE, 18( 9), 1-26. doi:10.1371/ journal.pone.0290968
    • NLM

      Weiguang L, Rodrigues RD, Jianglong Y, Yu-Tao Z, Pereira EJ de F, Gen L, Qiusheng Z, Liang Z. Complex network-based classification of radiographic images for COVID-19 diagnosis [Internet]. PLoS ONE. 2023 ; 18( 9): 1-26.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1371/journal.pone.0290968
    • Vancouver

      Weiguang L, Rodrigues RD, Jianglong Y, Yu-Tao Z, Pereira EJ de F, Gen L, Qiusheng Z, Liang Z. Complex network-based classification of radiographic images for COVID-19 diagnosis [Internet]. PLoS ONE. 2023 ; 18( 9): 1-26.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1371/journal.pone.0290968
  • Source: European Physical Journal - Special Topics. Unidades: FFCLRP, ICMC

    Subjects: REDES COMPLEXAS, SISTEMAS DINÂMICOS, ALGORITMOS ÚTEIS E ESPECÍFICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VERRI, Filipe Alves Neto et al. Network community detection via iterative edge removal in a flocking-like system. European Physical Journal - Special Topics, v. 230, n. 14-15, p. 2843-2855, 2021Tradução . . Disponível em: https://doi.org/10.1140/epjs/s11734-021-00154-5. Acesso em: 14 nov. 2024.
    • APA

      Verri, F. A. N., Gueleri, R. A., Qiusheng, Z., Junbao, Z., & Liang, Z. (2021). Network community detection via iterative edge removal in a flocking-like system. European Physical Journal - Special Topics, 230( 14-15), 2843-2855. doi:10.1140/epjs/s11734-021-00154-5
    • NLM

      Verri FAN, Gueleri RA, Qiusheng Z, Junbao Z, Liang Z. Network community detection via iterative edge removal in a flocking-like system [Internet]. European Physical Journal - Special Topics. 2021 ; 230( 14-15): 2843-2855.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1140/epjs/s11734-021-00154-5
    • Vancouver

      Verri FAN, Gueleri RA, Qiusheng Z, Junbao Z, Liang Z. Network community detection via iterative edge removal in a flocking-like system [Internet]. European Physical Journal - Special Topics. 2021 ; 230( 14-15): 2843-2855.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1140/epjs/s11734-021-00154-5
  • Source: European Physical Journal - Special Topics. Unidades: FFCLRP, ICMC

    Subjects: REDES COMPLEXAS, ANÁLISE DE SÉRIES TEMPORAIS, RECONHECIMENTO DE PADRÕES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANGHINONI, Leandro et al. Time series pattern identification by hierarchical community detection. European Physical Journal - Special Topics, v. 230, n. 14-15, p. 2775-2782, 2021Tradução . . Disponível em: https://doi.org/10.1140/epjs/s11734-021-00163-4. Acesso em: 14 nov. 2024.
    • APA

      Anghinoni, L., Vega-Oliveros, D. A., Silva, T. C., & Liang, Z. (2021). Time series pattern identification by hierarchical community detection. European Physical Journal - Special Topics, 230( 14-15), 2775-2782. doi:10.1140/epjs/s11734-021-00163-4
    • NLM

      Anghinoni L, Vega-Oliveros DA, Silva TC, Liang Z. Time series pattern identification by hierarchical community detection [Internet]. European Physical Journal - Special Topics. 2021 ; 230( 14-15): 2775-2782.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1140/epjs/s11734-021-00163-4
    • Vancouver

      Anghinoni L, Vega-Oliveros DA, Silva TC, Liang Z. Time series pattern identification by hierarchical community detection [Internet]. European Physical Journal - Special Topics. 2021 ; 230( 14-15): 2775-2782.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1140/epjs/s11734-021-00163-4
  • Source: Natural Computing. Unidades: FFCLRP, ICMC

    Subjects: REDES COMPLEXAS, APRENDIZADO COMPUTACIONAL, RECONHECIMENTO DE PADRÕES, BOLSA DE VALORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLLIRI, Tiago Santos e LIANG, Zhao. Stock market trend detection and automatic decision-making through a network-based classification model. Natural Computing, v. 20, n. 4, p. 791-804, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11047-020-09829-9. Acesso em: 14 nov. 2024.
    • APA

      Colliri, T. S., & Liang, Z. (2021). Stock market trend detection and automatic decision-making through a network-based classification model. Natural Computing, 20( 4), 791-804. doi:10.1007/s11047-020-09829-9
    • NLM

      Colliri TS, Liang Z. Stock market trend detection and automatic decision-making through a network-based classification model [Internet]. Natural Computing. 2021 ; 20( 4): 791-804.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1007/s11047-020-09829-9
    • Vancouver

      Colliri TS, Liang Z. Stock market trend detection and automatic decision-making through a network-based classification model [Internet]. Natural Computing. 2021 ; 20( 4): 791-804.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1007/s11047-020-09829-9
  • Source: Scientific Reports. Unidades: FFCLRP, ICMC

    Subjects: MINERAÇÃO DE DADOS, ANÁLISE DE SÉRIES TEMPORAIS, RECONHECIMENTO DE PADRÕES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GAO, Xubo et al. Temporal network pattern identification by community modelling. Scientific Reports, v. 10, p. 1-12, 2020Tradução . . Disponível em: https://doi.org/10.1038/s41598-019-57123-1. Acesso em: 14 nov. 2024.
    • APA

      Gao, X., Zheng, Q., Vega-Oliveros, D. A., Anghinoni, L., & Liang, Z. (2020). Temporal network pattern identification by community modelling. Scientific Reports, 10, 1-12. doi:10.1038/s41598-019-57123-1
    • NLM

      Gao X, Zheng Q, Vega-Oliveros DA, Anghinoni L, Liang Z. Temporal network pattern identification by community modelling [Internet]. Scientific Reports. 2020 ; 10 1-12.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1038/s41598-019-57123-1
    • Vancouver

      Gao X, Zheng Q, Vega-Oliveros DA, Anghinoni L, Liang Z. Temporal network pattern identification by community modelling [Internet]. Scientific Reports. 2020 ; 10 1-12.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1038/s41598-019-57123-1
  • Source: Scientific Reports. Unidades: FFCLRP, ICMC

    Subjects: REDES COMPLEXAS, ANÁLISE DE SÉRIES TEMPORAIS, CONGRESSO NACIONAL, CORRUPÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLLIRI, Tiago Santos e LIANG, Zhao. Analyzing the Bills-Voting dynamics and predicting corruption-convictions among brazilian congressmen through temporal networks. Scientific Reports, v. No 2019, p. 16754-1-16754-11, 2019Tradução . . Disponível em: https://doi.org/10.1038/s41598-019-53252-9. Acesso em: 14 nov. 2024.
    • APA

      Colliri, T. S., & Liang, Z. (2019). Analyzing the Bills-Voting dynamics and predicting corruption-convictions among brazilian congressmen through temporal networks. Scientific Reports, No 2019, 16754-1-16754-11. doi:10.1038/s41598-019-53252-9
    • NLM

      Colliri TS, Liang Z. Analyzing the Bills-Voting dynamics and predicting corruption-convictions among brazilian congressmen through temporal networks [Internet]. Scientific Reports. 2019 ; No 2019 16754-1-16754-11.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1038/s41598-019-53252-9
    • Vancouver

      Colliri TS, Liang Z. Analyzing the Bills-Voting dynamics and predicting corruption-convictions among brazilian congressmen through temporal networks [Internet]. Scientific Reports. 2019 ; No 2019 16754-1-16754-11.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1038/s41598-019-53252-9
  • Source: Neurocomputing. Conference titles: Brazilian Symposium on Neural Networks - SBRN. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, OTIMIZAÇÃO COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIANG, Xiaoming e LIANG, Zhao. Effect of nonidentical signal phases on signal amplification of two coupled excitable neurons. Neurocomputing. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.neucom.2013.06.041. Acesso em: 14 nov. 2024. , 2014
    • APA

      Liang, X., & Liang, Z. (2014). Effect of nonidentical signal phases on signal amplification of two coupled excitable neurons. Neurocomputing. Amsterdam: Elsevier. doi:10.1016/j.neucom.2013.06.041
    • NLM

      Liang X, Liang Z. Effect of nonidentical signal phases on signal amplification of two coupled excitable neurons [Internet]. Neurocomputing. 2014 ; 127 21-29.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.neucom.2013.06.041
    • Vancouver

      Liang X, Liang Z. Effect of nonidentical signal phases on signal amplification of two coupled excitable neurons [Internet]. Neurocomputing. 2014 ; 127 21-29.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.neucom.2013.06.041
  • Source: Neurocomputing. Conference titles: Brazilian Symposium on Neural Networks - SBRN. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, OTIMIZAÇÃO COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUPERTINO, Thiago H e GUELERI, Roberto e LIANG, Zhao. A semi-supervised classification technique based on interacting forces. Neurocomputing. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.neucom.2013.05.050. Acesso em: 14 nov. 2024. , 2014
    • APA

      Cupertino, T. H., Gueleri, R., & Liang, Z. (2014). A semi-supervised classification technique based on interacting forces. Neurocomputing. Amsterdam: Elsevier. doi:10.1016/j.neucom.2013.05.050
    • NLM

      Cupertino TH, Gueleri R, Liang Z. A semi-supervised classification technique based on interacting forces [Internet]. Neurocomputing. 2014 ; 127 43-51.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.neucom.2013.05.050
    • Vancouver

      Cupertino TH, Gueleri R, Liang Z. A semi-supervised classification technique based on interacting forces [Internet]. Neurocomputing. 2014 ; 127 43-51.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.neucom.2013.05.050
  • Source: Neural Computing & Applications. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, COMPUTAÇÃO GRÁFICA, PROCESSAMENTO DE IMAGENS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUPERTINO, Thiago H e SILVA, Thiago C e LIANG, Zhao. Classification of multiple observation sets via network modularity. Neural Computing & Applications, v. 23, n. 7-8, p. 1923-1929, 2013Tradução . . Disponível em: https://doi.org/10.1007/s00521-012-1115-y. Acesso em: 14 nov. 2024.
    • APA

      Cupertino, T. H., Silva, T. C., & Liang, Z. (2013). Classification of multiple observation sets via network modularity. Neural Computing & Applications, 23( 7-8), 1923-1929. doi:10.1007/s00521-012-1115-y
    • NLM

      Cupertino TH, Silva TC, Liang Z. Classification of multiple observation sets via network modularity [Internet]. Neural Computing & Applications. 2013 ; 23( 7-8): 1923-1929.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1007/s00521-012-1115-y
    • Vancouver

      Cupertino TH, Silva TC, Liang Z. Classification of multiple observation sets via network modularity [Internet]. Neural Computing & Applications. 2013 ; 23( 7-8): 1923-1929.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1007/s00521-012-1115-y
  • Source: Neurocomputing. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, OTIMIZAÇÃO COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUPERTINO, Thiago H e HUERTAS, Jean e LIANG, Zhao. Data clustering using controlled consensus in complex networks. Neurocomputing, v. 118, p. 132-140, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2013.02.026. Acesso em: 14 nov. 2024.
    • APA

      Cupertino, T. H., Huertas, J., & Liang, Z. (2013). Data clustering using controlled consensus in complex networks. Neurocomputing, 118, 132-140. doi:10.1016/j.neucom.2013.02.026
    • NLM

      Cupertino TH, Huertas J, Liang Z. Data clustering using controlled consensus in complex networks [Internet]. Neurocomputing. 2013 ; 118 132-140.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.neucom.2013.02.026
    • Vancouver

      Cupertino TH, Huertas J, Liang Z. Data clustering using controlled consensus in complex networks [Internet]. Neurocomputing. 2013 ; 118 132-140.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.neucom.2013.02.026
  • Source: Neural Networks. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, OTIMIZAÇÃO COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Thiago Christiano e LIANG, Zhao. Detecting and preventing error propagation via competitive learning. Neural Networks, v. 41, p. 70-84, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.neunet.2012.11.001. Acesso em: 14 nov. 2024.
    • APA

      Silva, T. C., & Liang, Z. (2013). Detecting and preventing error propagation via competitive learning. Neural Networks, 41, 70-84. doi:10.1016/j.neunet.2012.11.001
    • NLM

      Silva TC, Liang Z. Detecting and preventing error propagation via competitive learning [Internet]. Neural Networks. 2013 ; 41 70-84.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.neunet.2012.11.001
    • Vancouver

      Silva TC, Liang Z. Detecting and preventing error propagation via competitive learning [Internet]. Neural Networks. 2013 ; 41 70-84.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.neunet.2012.11.001
  • Source: Neural Networks. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, OTIMIZAÇÃO COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      XIAOMING, Liang e LIANG, Zhao. Phase-disorder-induced firing activity in excitable neuronal networks with attractive and repulsive coupling. Neural Networks, v. no 2012, p. 40-45, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.neunet.2012.08.002. Acesso em: 14 nov. 2024.
    • APA

      Xiaoming, L., & Liang, Z. (2012). Phase-disorder-induced firing activity in excitable neuronal networks with attractive and repulsive coupling. Neural Networks, no 2012, 40-45. doi:10.1016/j.neunet.2012.08.002
    • NLM

      Xiaoming L, Liang Z. Phase-disorder-induced firing activity in excitable neuronal networks with attractive and repulsive coupling [Internet]. Neural Networks. 2012 ; no 2012 40-45.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.neunet.2012.08.002
    • Vancouver

      Xiaoming L, Liang Z. Phase-disorder-induced firing activity in excitable neuronal networks with attractive and repulsive coupling [Internet]. Neural Networks. 2012 ; no 2012 40-45.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.neunet.2012.08.002
  • Source: Neurocomputing. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, OTIMIZAÇÃO COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Thiago C e LIANG, Zhao. Semi-supervised learning guided by the modularity measure in complex networks. Neurocomputing, v. fe 2012, n. 1, p. 30-37, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2011.04.042. Acesso em: 14 nov. 2024.
    • APA

      Silva, T. C., & Liang, Z. (2012). Semi-supervised learning guided by the modularity measure in complex networks. Neurocomputing, fe 2012( 1), 30-37. doi:10.1016/j.neucom.2011.04.042
    • NLM

      Silva TC, Liang Z. Semi-supervised learning guided by the modularity measure in complex networks [Internet]. Neurocomputing. 2012 ; fe 2012( 1): 30-37.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.neucom.2011.04.042
    • Vancouver

      Silva TC, Liang Z. Semi-supervised learning guided by the modularity measure in complex networks [Internet]. Neurocomputing. 2012 ; fe 2012( 1): 30-37.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.neucom.2011.04.042
  • Source: Information Sciences. Unidade: ICMC

    Subjects: COMPUTAÇÃO GRÁFICA, PROCESSAMENTO DE IMAGENS, INTELIGÊNCIA ARTIFICIAL, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERTINI JÚNIOR, João Roberto et al. A nonparametric classification method based on K-associated graphs. Information Sciences, v. 181, n. 24, p. 5435-5456, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.ins.2011.07.043. Acesso em: 14 nov. 2024.
    • APA

      Bertini Júnior, J. R., Liang, Z., Motta, R., & Lopes, A. de A. (2011). A nonparametric classification method based on K-associated graphs. Information Sciences, 181( 24), 5435-5456. doi:10.1016/j.ins.2011.07.043
    • NLM

      Bertini Júnior JR, Liang Z, Motta R, Lopes A de A. A nonparametric classification method based on K-associated graphs [Internet]. Information Sciences. 2011 ; 181( 24): 5435-5456.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.ins.2011.07.043
    • Vancouver

      Bertini Júnior JR, Liang Z, Motta R, Lopes A de A. A nonparametric classification method based on K-associated graphs [Internet]. Information Sciences. 2011 ; 181( 24): 5435-5456.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.ins.2011.07.043
  • Source: Physical Review E. Unidade: ICMC

    Assunto: REDES NEURAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIANG, Xiaoming et al. Phase-disorder-induced double resonance of neuronal activity. Physical Review E, v. 82, n. 1, p. 010902_1-010902_4, 2010Tradução . . Disponível em: https://doi.org/10.1103/physreve.82.010902. Acesso em: 14 nov. 2024.
    • APA

      Liang, X., Liu, Z., Dhamala, M., & Zhao, L. (2010). Phase-disorder-induced double resonance of neuronal activity. Physical Review E, 82( 1), 010902_1-010902_4. doi:10.1103/physreve.82.010902
    • NLM

      Liang X, Liu Z, Dhamala M, Zhao L. Phase-disorder-induced double resonance of neuronal activity [Internet]. Physical Review E. 2010 ; 82( 1): 010902_1-010902_4.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1103/physreve.82.010902
    • Vancouver

      Liang X, Liu Z, Dhamala M, Zhao L. Phase-disorder-induced double resonance of neuronal activity [Internet]. Physical Review E. 2010 ; 82( 1): 010902_1-010902_4.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1103/physreve.82.010902
  • Source: Soft Computing. Conference titles: International Conference on Natural Computation -ICNC. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, DESCOBERTA DE CONHECIMENTO, COMPUTAÇÃO EVOLUTIVA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIANG, Zhao e MAOZU, Guo e LIPO, Wang. The 4th International Conference on Natural Computation .. [Editorial]. Soft Computing. New York: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s00500-009-0424-2. Acesso em: 14 nov. 2024. , 2009
    • APA

      Liang, Z., Maozu, G., & Lipo, W. (2009). The 4th International Conference on Natural Computation .. [Editorial]. Soft Computing. New York: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. doi:10.1007/s00500-009-0424-2
    • NLM

      Liang Z, Maozu G, Lipo W. The 4th International Conference on Natural Computation .. [Editorial] [Internet]. Soft Computing. 2009 ; 13( 12): 1123-1124.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1007/s00500-009-0424-2
    • Vancouver

      Liang Z, Maozu G, Lipo W. The 4th International Conference on Natural Computation .. [Editorial] [Internet]. Soft Computing. 2009 ; 13( 12): 1123-1124.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1007/s00500-009-0424-2
  • Source: Neurocomputing. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, OTIMIZAÇÃO COMBINATÓRIA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUILES, Marcos Gonçalves et al. A network of integrate and fire neurons for visual selection. Neurocomputing, v. 72, n. 10-12, p. 2198-2208, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2008.10.024. Acesso em: 14 nov. 2024.
    • APA

      Quiles, M. G., Liang Zhao,, Breve, F. A., & Romero, R. A. F. (2009). A network of integrate and fire neurons for visual selection. Neurocomputing, 72( 10-12), 2198-2208. doi:10.1016/j.neucom.2008.10.024
    • NLM

      Quiles MG, Liang Zhao, Breve FA, Romero RAF. A network of integrate and fire neurons for visual selection [Internet]. Neurocomputing. 2009 ; 72( 10-12): 2198-2208.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.neucom.2008.10.024
    • Vancouver

      Quiles MG, Liang Zhao, Breve FA, Romero RAF. A network of integrate and fire neurons for visual selection [Internet]. Neurocomputing. 2009 ; 72( 10-12): 2198-2208.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.neucom.2008.10.024
  • Source: Neurocomputing. Unidade: ICMC

    Subjects: INTELIGÊNCIA ARTIFICIAL, OTIMIZAÇÃO COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DELBEM, Alexandre Cláudio Botazzo e CORRÊA, Leonardo Garcia e ZHAO, Liang. Design of associative memories using cellular neural networks. Neurocomputing, v. 72, n. 10-12, p. 2180-2188, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2008.06.029. Acesso em: 14 nov. 2024.
    • APA

      Delbem, A. C. B., Corrêa, L. G., & Zhao, L. (2009). Design of associative memories using cellular neural networks. Neurocomputing, 72( 10-12), 2180-2188. doi:10.1016/j.neucom.2008.06.029
    • NLM

      Delbem ACB, Corrêa LG, Zhao L. Design of associative memories using cellular neural networks [Internet]. Neurocomputing. 2009 ; 72( 10-12): 2180-2188.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.neucom.2008.06.029
    • Vancouver

      Delbem ACB, Corrêa LG, Zhao L. Design of associative memories using cellular neural networks [Internet]. Neurocomputing. 2009 ; 72( 10-12): 2180-2188.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.neucom.2008.06.029

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024