Coarsening algorithm based on multi-label propagation for knowledge discovery in bipartite networks (2024)
- Authors:
- USP affiliated authors: LIANG, ZHAO - FFCLRP ; YAN, JIANGLONG - ICMC
- Unidades: FFCLRP; ICMC
- DOI: 10.1109/TNSE.2023.3331655
- Subjects: APRENDIZADO COMPUTACIONAL; DESCOBERTA DE CONHECIMENTO; ALGORITMOS ÚTEIS E ESPECÍFICOS; REDES COMPLEXAS
- Keywords: Bipartite Networks; Multilevel Approach; Coarsening; Label Propagation; Multi-label Propagation
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Los Alamitos
- Date published: 2024
- Source:
- Título: IEEE Transactions on Network Science and Engineering
- ISSN: 2327-4697
- Volume/Número/Paginação/Ano: v. 11, n. 2, p. 1799-1809, Mar.-Apr. 2024
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
VALEJO, Alan Demetrius Baria et al. Coarsening algorithm based on multi-label propagation for knowledge discovery in bipartite networks. IEEE Transactions on Network Science and Engineering, v. 11, n. 2, p. 1799-1809, 2024Tradução . . Disponível em: https://doi.org/10.1109/TNSE.2023.3331655. Acesso em: 19 fev. 2026. -
APA
Valejo, A. D. B., Althoff, P. E., Faleiros, T. de P., Rocha Filho, G. P., Yu-Tao, Z., Jianglong, Y., et al. (2024). Coarsening algorithm based on multi-label propagation for knowledge discovery in bipartite networks. IEEE Transactions on Network Science and Engineering, 11( 2), 1799-1809. doi:10.1109/TNSE.2023.3331655 -
NLM
Valejo ADB, Althoff PE, Faleiros T de P, Rocha Filho GP, Yu-Tao Z, Jianglong Y, Weiguang L, Liang Z. Coarsening algorithm based on multi-label propagation for knowledge discovery in bipartite networks [Internet]. IEEE Transactions on Network Science and Engineering. 2024 ; 11( 2): 1799-1809.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1109/TNSE.2023.3331655 -
Vancouver
Valejo ADB, Althoff PE, Faleiros T de P, Rocha Filho GP, Yu-Tao Z, Jianglong Y, Weiguang L, Liang Z. Coarsening algorithm based on multi-label propagation for knowledge discovery in bipartite networks [Internet]. IEEE Transactions on Network Science and Engineering. 2024 ; 11( 2): 1799-1809.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1109/TNSE.2023.3331655 - Complex network-based classification of radiographic images for COVID-19 diagnosis
- Semi-supervised learning with concept drift using particle dynamics applied to network intrusion detection data
- Computer-aided music composition with LSTM neural network and chaotic inspiration
- Semi-supervised learning by edge domination in complex networks
- Dimensionality reduction with the k-associated optimal graph applied to image classification
- Bias-guided random walk for network-based data classification
- A review and comparative analysis of coarsening algorithms on bipartite networks
- Semi-supervised learning from imperfect data through particle cooperation and competition
- Chaotic phase synchronization and desynchronization in an oscillator network for object selection
- Random walk in feature-sample networks for semi-supervised classification
Informações sobre o DOI: 10.1109/TNSE.2023.3331655 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3173017.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
