Filtros : "Indexado no Mathematical Reviews" "ANÁLISE FUNCIONAL" Removidos: "ALCARAZ, FRANCISCO CASTILHO" "2012" Limpar

Filtros



Refine with date range


  • Source: Positivity. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, FUNÇÕES ESPECIAIS, INTERPOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J. C e MENEGATTO, Valdir Antônio e PERON, Ana Paula. Strictly positive definite kernels on a product of circles. Positivity, v. 21, n. 1, p. 329-342, 2017Tradução . . Disponível em: https://doi.org/10.1007/s11117-016-0425-1. Acesso em: 15 nov. 2024.
    • APA

      Guella, J. C., Menegatto, V. A., & Peron, A. P. (2017). Strictly positive definite kernels on a product of circles. Positivity, 21( 1), 329-342. doi:10.1007/s11117-016-0425-1
    • NLM

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of circles [Internet]. Positivity. 2017 ; 21( 1): 329-342.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s11117-016-0425-1
    • Vancouver

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of circles [Internet]. Positivity. 2017 ; 21( 1): 329-342.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s11117-016-0425-1
  • Source: Banach Journal of Mathematical Analysis. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, FUNÇÕES ESPECIAIS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J. C e MENEGATTO, Valdir Antônio e PERON, Ana Paula. An extension of a theorem of Schoenberg to products of spheres. Banach Journal of Mathematical Analysis, v. 10, n. 4, p. 671-685, 2016Tradução . . Disponível em: https://doi.org/10.1215/17358787-3649260. Acesso em: 15 nov. 2024.
    • APA

      Guella, J. C., Menegatto, V. A., & Peron, A. P. (2016). An extension of a theorem of Schoenberg to products of spheres. Banach Journal of Mathematical Analysis, 10( 4), 671-685. doi:10.1215/17358787-3649260
    • NLM

      Guella JC, Menegatto VA, Peron AP. An extension of a theorem of Schoenberg to products of spheres [Internet]. Banach Journal of Mathematical Analysis. 2016 ; 10( 4): 671-685.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1215/17358787-3649260
    • Vancouver

      Guella JC, Menegatto VA, Peron AP. An extension of a theorem of Schoenberg to products of spheres [Internet]. Banach Journal of Mathematical Analysis. 2016 ; 10( 4): 671-685.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1215/17358787-3649260
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, OPERADORES INTEGRAIS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORDÃO, Thaís e MENEGATTO, Valdir Antônio. Estimates for Fourier sums and eigenvalues of integral operators via multipliers on the sphere. Proceedings of the American Mathematical Society, v. 144, n. Ja 2016, p. 269-283, 2016Tradução . . Disponível em: https://doi.org/10.1090/proc12716. Acesso em: 15 nov. 2024.
    • APA

      Jordão, T., & Menegatto, V. A. (2016). Estimates for Fourier sums and eigenvalues of integral operators via multipliers on the sphere. Proceedings of the American Mathematical Society, 144( Ja 2016), 269-283. doi:10.1090/proc12716
    • NLM

      Jordão T, Menegatto VA. Estimates for Fourier sums and eigenvalues of integral operators via multipliers on the sphere [Internet]. Proceedings of the American Mathematical Society. 2016 ; 144( Ja 2016): 269-283.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1090/proc12716
    • Vancouver

      Jordão T, Menegatto VA. Estimates for Fourier sums and eigenvalues of integral operators via multipliers on the sphere [Internet]. Proceedings of the American Mathematical Society. 2016 ; 144( Ja 2016): 269-283.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1090/proc12716
  • Source: Numerical Functional Analysis and Optimization. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, OPERADORES INTEGRAIS, EQUAÇÕES INTEGRAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, D e MENEGATTO, Valdir Antônio. Decay of singular values of power series kernels on the sphere. Numerical Functional Analysis and Optimization, v. 37, n. 4, p. 440-458, 2016Tradução . . Disponível em: https://doi.org/10.1080/01630563.2015.1136890. Acesso em: 15 nov. 2024.
    • APA

      Azevedo, D., & Menegatto, V. A. (2016). Decay of singular values of power series kernels on the sphere. Numerical Functional Analysis and Optimization, 37( 4), 440-458. doi:10.1080/01630563.2015.1136890
    • NLM

      Azevedo D, Menegatto VA. Decay of singular values of power series kernels on the sphere [Internet]. Numerical Functional Analysis and Optimization. 2016 ; 37( 4): 440-458.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1080/01630563.2015.1136890
    • Vancouver

      Azevedo D, Menegatto VA. Decay of singular values of power series kernels on the sphere [Internet]. Numerical Functional Analysis and Optimization. 2016 ; 37( 4): 440-458.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1080/01630563.2015.1136890
  • Source: Journal of Multivariate Analysis. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, PROCESSOS ESTOCÁSTICOS, CAMPOS ALEATÓRIOS, GEOESTATÍSTICA, ANÁLISE HARMÔNICA, FUNÇÕES ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONFIM, Rafaela N e MENEGATTO, Valdir Antônio. Strict positive definiteness of multivariate covariance functions on compact two-point homogeneous spaces. Journal of Multivariate Analysis, v. 152, p. 237-248, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jmva.2016.09.004. Acesso em: 15 nov. 2024.
    • APA

      Bonfim, R. N., & Menegatto, V. A. (2016). Strict positive definiteness of multivariate covariance functions on compact two-point homogeneous spaces. Journal of Multivariate Analysis, 152, 237-248. doi:10.1016/j.jmva.2016.09.004
    • NLM

      Bonfim RN, Menegatto VA. Strict positive definiteness of multivariate covariance functions on compact two-point homogeneous spaces [Internet]. Journal of Multivariate Analysis. 2016 ; 152 237-248.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jmva.2016.09.004
    • Vancouver

      Bonfim RN, Menegatto VA. Strict positive definiteness of multivariate covariance functions on compact two-point homogeneous spaces [Internet]. Journal of Multivariate Analysis. 2016 ; 152 237-248.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jmva.2016.09.004
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, ESPAÇOS HOMOGÊNEOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, V. S e MENEGATTO, Valdir Antônio. Differentiable positive definite functions on two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, v. 434, n. 1, p. 698-712, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.09.040. Acesso em: 15 nov. 2024.
    • APA

      Barbosa, V. S., & Menegatto, V. A. (2016). Differentiable positive definite functions on two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, 434( 1), 698-712. doi:10.1016/j.jmaa.2015.09.040
    • NLM

      Barbosa VS, Menegatto VA. Differentiable positive definite functions on two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 434( 1): 698-712.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2015.09.040
    • Vancouver

      Barbosa VS, Menegatto VA. Differentiable positive definite functions on two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 434( 1): 698-712.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2015.09.040
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J. C e MENEGATTO, Valdir Antônio. Strictly positive definite kernels on a product of spheres. Journal of Mathematical Analysis and Applications, v. 435, n. 1, p. 286-301, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.10.026. Acesso em: 15 nov. 2024.
    • APA

      Guella, J. C., & Menegatto, V. A. (2016). Strictly positive definite kernels on a product of spheres. Journal of Mathematical Analysis and Applications, 435( 1), 286-301. doi:10.1016/j.jmaa.2015.10.026
    • NLM

      Guella JC, Menegatto VA. Strictly positive definite kernels on a product of spheres [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 435( 1): 286-301.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2015.10.026
    • Vancouver

      Guella JC, Menegatto VA. Strictly positive definite kernels on a product of spheres [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 435( 1): 286-301.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2015.10.026
  • Source: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, FUNÇÕES ESPECIAIS, ANÁLISE HARMÔNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, Jean C e MENEGATTO, Valdir Antônio e PERON, Ana Paula. Strictly positive definite kernels on a product of spheres II. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, v. 12, n. 103, p. 1-15, 2016Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2016.103. Acesso em: 15 nov. 2024.
    • APA

      Guella, J. C., Menegatto, V. A., & Peron, A. P. (2016). Strictly positive definite kernels on a product of spheres II. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 12( 103), 1-15. doi:10.3842/SIGMA.2016.103
    • NLM

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of spheres II [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2016 ; 12( 103): 1-15.[citado 2024 nov. 15 ] Available from: https://doi.org/10.3842/SIGMA.2016.103
    • Vancouver

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of spheres II [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2016 ; 12( 103): 1-15.[citado 2024 nov. 15 ] Available from: https://doi.org/10.3842/SIGMA.2016.103
  • Source: Mathematical Inequalities and Applications. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, V. S e MENEGATTO, Valdir Antônio. Strictly positive definite kernels on compact two-point homogeneous spaces. Mathematical Inequalities and Applications, v. 19, n. 2, p. 743-756, 2016Tradução . . Disponível em: https://doi.org/10.7153/mia-19-54. Acesso em: 15 nov. 2024.
    • APA

      Barbosa, V. S., & Menegatto, V. A. (2016). Strictly positive definite kernels on compact two-point homogeneous spaces. Mathematical Inequalities and Applications, 19( 2), 743-756. doi:10.7153/mia-19-54
    • NLM

      Barbosa VS, Menegatto VA. Strictly positive definite kernels on compact two-point homogeneous spaces [Internet]. Mathematical Inequalities and Applications. 2016 ; 19( 2): 743-756.[citado 2024 nov. 15 ] Available from: https://doi.org/10.7153/mia-19-54
    • Vancouver

      Barbosa VS, Menegatto VA. Strictly positive definite kernels on compact two-point homogeneous spaces [Internet]. Mathematical Inequalities and Applications. 2016 ; 19( 2): 743-756.[citado 2024 nov. 15 ] Available from: https://doi.org/10.7153/mia-19-54
  • Source: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, ANÁLISE HARMÔNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Victor S e MENEGATTO, Valdir Antônio. Generalized convolution roots of positive definite kernels on complex spheres. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, v. 11, p. 1-13, 2015Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2015.014. Acesso em: 15 nov. 2024.
    • APA

      Barbosa, V. S., & Menegatto, V. A. (2015). Generalized convolution roots of positive definite kernels on complex spheres. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 11, 1-13. doi:10.3842/SIGMA.2015.014
    • NLM

      Barbosa VS, Menegatto VA. Generalized convolution roots of positive definite kernels on complex spheres [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2015 ; 11 1-13.[citado 2024 nov. 15 ] Available from: https://doi.org/10.3842/SIGMA.2015.014
    • Vancouver

      Barbosa VS, Menegatto VA. Generalized convolution roots of positive definite kernels on complex spheres [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2015 ; 11 1-13.[citado 2024 nov. 15 ] Available from: https://doi.org/10.3842/SIGMA.2015.014
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, OPERADORES INTEGRAIS, EQUAÇÕES INTEGRAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORDÃO, Thaís e SUN, Xingping. General types of spherical mean operators and k-functionals of fractional orders. Communications on Pure and Applied Analysis, v. 14, n. 3, p. 743-757, 2015Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2015.14.743. Acesso em: 15 nov. 2024.
    • APA

      Jordão, T., & Sun, X. (2015). General types of spherical mean operators and k-functionals of fractional orders. Communications on Pure and Applied Analysis, 14( 3), 743-757. doi:10.3934/cpaa.2015.14.743
    • NLM

      Jordão T, Sun X. General types of spherical mean operators and k-functionals of fractional orders [Internet]. Communications on Pure and Applied Analysis. 2015 ; 14( 3): 743-757.[citado 2024 nov. 15 ] Available from: https://doi.org/10.3934/cpaa.2015.14.743
    • Vancouver

      Jordão T, Sun X. General types of spherical mean operators and k-functionals of fractional orders [Internet]. Communications on Pure and Applied Analysis. 2015 ; 14( 3): 743-757.[citado 2024 nov. 15 ] Available from: https://doi.org/10.3934/cpaa.2015.14.743
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENEGATTO, Valdir Antônio. Differentiability of bizonal positive definite kernels on complex spheres. Journal of Mathematical Analysis and Applications, v. 412, n. 1, p. 189-199, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2013.10.057. Acesso em: 15 nov. 2024.
    • APA

      Menegatto, V. A. (2014). Differentiability of bizonal positive definite kernels on complex spheres. Journal of Mathematical Analysis and Applications, 412( 1), 189-199. doi:10.1016/j.jmaa.2013.10.057
    • NLM

      Menegatto VA. Differentiability of bizonal positive definite kernels on complex spheres [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 412( 1): 189-199.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2013.10.057
    • Vancouver

      Menegatto VA. Differentiability of bizonal positive definite kernels on complex spheres [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 412( 1): 189-199.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2013.10.057
  • Source: Mathematical Inequalities & Applications. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, D e MENEGATTO, Valdir Antônio. Eigenvalue decay of integral operators generated by power series-like kernels. Mathematical Inequalities & Applications, v. 17, n. 2, p. 693-705, 2014Tradução . . Disponível em: https://doi.org/10.7153/mia-17-51. Acesso em: 15 nov. 2024.
    • APA

      Azevedo, D., & Menegatto, V. A. (2014). Eigenvalue decay of integral operators generated by power series-like kernels. Mathematical Inequalities & Applications, 17( 2), 693-705. doi:10.7153/mia-17-51
    • NLM

      Azevedo D, Menegatto VA. Eigenvalue decay of integral operators generated by power series-like kernels [Internet]. Mathematical Inequalities & Applications. 2014 ; 17( 2): 693-705.[citado 2024 nov. 15 ] Available from: https://doi.org/10.7153/mia-17-51
    • Vancouver

      Azevedo D, Menegatto VA. Eigenvalue decay of integral operators generated by power series-like kernels [Internet]. Mathematical Inequalities & Applications. 2014 ; 17( 2): 693-705.[citado 2024 nov. 15 ] Available from: https://doi.org/10.7153/mia-17-51
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORDÃO, Thaís e MENEGATTO, Valdir Antônio. Weighted Fourier-Laplace transforms in reproducing kernel Hilbert spaces on the sphere. Journal of Mathematical Analysis and Applications, v. 411, n. 2, p. 732-741, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2013.10.020. Acesso em: 15 nov. 2024.
    • APA

      Jordão, T., & Menegatto, V. A. (2014). Weighted Fourier-Laplace transforms in reproducing kernel Hilbert spaces on the sphere. Journal of Mathematical Analysis and Applications, 411( 2), 732-741. doi:10.1016/j.jmaa.2013.10.020
    • NLM

      Jordão T, Menegatto VA. Weighted Fourier-Laplace transforms in reproducing kernel Hilbert spaces on the sphere [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 411( 2): 732-741.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2013.10.020
    • Vancouver

      Jordão T, Menegatto VA. Weighted Fourier-Laplace transforms in reproducing kernel Hilbert spaces on the sphere [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 411( 2): 732-741.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jmaa.2013.10.020
  • Source: Journal of Approximation Theory. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, D e MENEGATTO, Valdir Antônio. Sharp estimates for eigenvalues of integral operators generated by dot product kernels on the sphere. Journal of Approximation Theory, v. 177, n. ja 2014, p. 57-68, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.jat.2013.10.002. Acesso em: 15 nov. 2024.
    • APA

      Azevedo, D., & Menegatto, V. A. (2014). Sharp estimates for eigenvalues of integral operators generated by dot product kernels on the sphere. Journal of Approximation Theory, 177( ja 2014), 57-68. doi:10.1016/j.jat.2013.10.002
    • NLM

      Azevedo D, Menegatto VA. Sharp estimates for eigenvalues of integral operators generated by dot product kernels on the sphere [Internet]. Journal of Approximation Theory. 2014 ; 177( ja 2014): 57-68.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jat.2013.10.002
    • Vancouver

      Azevedo D, Menegatto VA. Sharp estimates for eigenvalues of integral operators generated by dot product kernels on the sphere [Internet]. Journal of Approximation Theory. 2014 ; 177( ja 2014): 57-68.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.jat.2013.10.002
  • Source: Acta Mathematica Sinica, English Series. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, M. H e MENEGATTO, Valdir Antônio e OLIVEIRA, C. P. Laplace-Beltrami differentiability of positive definite kernels on the sphere. Acta Mathematica Sinica, English Series, v. 29, n. 1, p. 93-104, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10114-012-1067-2. Acesso em: 15 nov. 2024.
    • APA

      Castro, M. H., Menegatto, V. A., & Oliveira, C. P. (2013). Laplace-Beltrami differentiability of positive definite kernels on the sphere. Acta Mathematica Sinica, English Series, 29( 1), 93-104. doi:10.1007/s10114-012-1067-2
    • NLM

      Castro MH, Menegatto VA, Oliveira CP. Laplace-Beltrami differentiability of positive definite kernels on the sphere [Internet]. Acta Mathematica Sinica, English Series. 2013 ; 29( 1): 93-104.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s10114-012-1067-2
    • Vancouver

      Castro MH, Menegatto VA, Oliveira CP. Laplace-Beltrami differentiability of positive definite kernels on the sphere [Internet]. Acta Mathematica Sinica, English Series. 2013 ; 29( 1): 93-104.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s10114-012-1067-2
  • Source: Annals of Functional Analysis. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, J. C e MENEGATTO, Valdir Antônio. Positive definiteness, reproducing kernel Hilbert spaces and beyond. Annals of Functional Analysis, v. 4, n. 1, p. 64-88, 2013Tradução . . Disponível em: https://doi.org/10.15352/afa/1399899838. Acesso em: 15 nov. 2024.
    • APA

      Ferreira, J. C., & Menegatto, V. A. (2013). Positive definiteness, reproducing kernel Hilbert spaces and beyond. Annals of Functional Analysis, 4( 1), 64-88. doi:10.15352/afa/1399899838
    • NLM

      Ferreira JC, Menegatto VA. Positive definiteness, reproducing kernel Hilbert spaces and beyond [Internet]. Annals of Functional Analysis. 2013 ; 4( 1): 64-88.[citado 2024 nov. 15 ] Available from: https://doi.org/10.15352/afa/1399899838
    • Vancouver

      Ferreira JC, Menegatto VA. Positive definiteness, reproducing kernel Hilbert spaces and beyond [Internet]. Annals of Functional Analysis. 2013 ; 4( 1): 64-88.[citado 2024 nov. 15 ] Available from: https://doi.org/10.15352/afa/1399899838
  • Source: Annali di Matematica Pura ed Applicata. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, J. C e MENEGATTO, Valdir Antônio. Eigenvalue decay rates for positive integral operators. Annali di Matematica Pura ed Applicata, v. 192, n. 6, p. 1025-1041, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10231-012-0256-z. Acesso em: 15 nov. 2024.
    • APA

      Ferreira, J. C., & Menegatto, V. A. (2013). Eigenvalue decay rates for positive integral operators. Annali di Matematica Pura ed Applicata, 192( 6), 1025-1041. doi:10.1007/s10231-012-0256-z
    • NLM

      Ferreira JC, Menegatto VA. Eigenvalue decay rates for positive integral operators [Internet]. Annali di Matematica Pura ed Applicata. 2013 ; 192( 6): 1025-1041.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s10231-012-0256-z
    • Vancouver

      Ferreira JC, Menegatto VA. Eigenvalue decay rates for positive integral operators [Internet]. Annali di Matematica Pura ed Applicata. 2013 ; 192( 6): 1025-1041.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s10231-012-0256-z
  • Source: Collectanea Mathematica. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENEGATTO, Valdir Antônio e PERON, Ana Paula. On the construction of uniformly convergent disk polynomial expansions. Collectanea Mathematica, v. 62, n. 2, p. 151-159, 2011Tradução . . Disponível em: https://doi.org/10.1007/s13348-010-0017-5. Acesso em: 15 nov. 2024.
    • APA

      Menegatto, V. A., & Peron, A. P. (2011). On the construction of uniformly convergent disk polynomial expansions. Collectanea Mathematica, 62( 2), 151-159. doi:10.1007/s13348-010-0017-5
    • NLM

      Menegatto VA, Peron AP. On the construction of uniformly convergent disk polynomial expansions [Internet]. Collectanea Mathematica. 2011 ; 62( 2): 151-159.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s13348-010-0017-5
    • Vancouver

      Menegatto VA, Peron AP. On the construction of uniformly convergent disk polynomial expansions [Internet]. Collectanea Mathematica. 2011 ; 62( 2): 151-159.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s13348-010-0017-5
  • Source: Designs, Codes and Cryptography. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENEGATTO, Valdir Antônio e OLIVEIRA, Claudemir Pinheiro de e PERON, Ana Paula. Exact point-distributions over the complex sphere. Designs, Codes and Cryptography, v. 60, n. 3, p. 203-223, 2011Tradução . . Disponível em: https://doi.org/10.1007/s10623-010-9425-5. Acesso em: 15 nov. 2024.
    • APA

      Menegatto, V. A., Oliveira, C. P. de, & Peron, A. P. (2011). Exact point-distributions over the complex sphere. Designs, Codes and Cryptography, 60( 3), 203-223. doi:10.1007/s10623-010-9425-5
    • NLM

      Menegatto VA, Oliveira CP de, Peron AP. Exact point-distributions over the complex sphere [Internet]. Designs, Codes and Cryptography. 2011 ; 60( 3): 203-223.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s10623-010-9425-5
    • Vancouver

      Menegatto VA, Oliveira CP de, Peron AP. Exact point-distributions over the complex sphere [Internet]. Designs, Codes and Cryptography. 2011 ; 60( 3): 203-223.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s10623-010-9425-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024