Positive definiteness, reproducing kernel Hilbert spaces and beyond (2013)
- Authors:
- Autor USP: MENEGATTO, VALDIR ANTONIO - ICMC
- Unidade: ICMC
- DOI: 10.15352/afa/1399899838
- Assunto: ANÁLISE FUNCIONAL
- Language: Inglês
- Imprenta:
- Source:
- Título: Annals of Functional Analysis
- ISSN: 2008-8752
- Volume/Número/Paginação/Ano: v. 4, n. 1, p. 64-88, 2013
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
FERREIRA, J. C e MENEGATTO, Valdir Antônio. Positive definiteness, reproducing kernel Hilbert spaces and beyond. Annals of Functional Analysis, v. 4, n. 1, p. 64-88, 2013Tradução . . Disponível em: https://doi.org/10.15352/afa/1399899838. Acesso em: 26 jan. 2026. -
APA
Ferreira, J. C., & Menegatto, V. A. (2013). Positive definiteness, reproducing kernel Hilbert spaces and beyond. Annals of Functional Analysis, 4( 1), 64-88. doi:10.15352/afa/1399899838 -
NLM
Ferreira JC, Menegatto VA. Positive definiteness, reproducing kernel Hilbert spaces and beyond [Internet]. Annals of Functional Analysis. 2013 ; 4( 1): 64-88.[citado 2026 jan. 26 ] Available from: https://doi.org/10.15352/afa/1399899838 -
Vancouver
Ferreira JC, Menegatto VA. Positive definiteness, reproducing kernel Hilbert spaces and beyond [Internet]. Annals of Functional Analysis. 2013 ; 4( 1): 64-88.[citado 2026 jan. 26 ] Available from: https://doi.org/10.15352/afa/1399899838 - Generalized interpolation on spheres using positive definite and related functions
- A complex approach to strict positive definiteness on spheres
- Strict positive definiteness on spheres via disk polynomilas
- Conditionally positive definite dot procuct kernels
- From Schoenberg coefficients to Schoenberg functions: strict positive definiteness
- Positive definite kernels on complex spheres
- Approximation by spherical convolution
- Strictly positive definite multivariate covariance functions on compact two-point homogeneous spaces
- Approximation on the sphere by weighted Fourier expansions
- Strictly positive definite kernels on the circle
Informações sobre o DOI: 10.15352/afa/1399899838 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
