Approximation on the sphere by weighted Fourier expansions (2005)
- Authors:
- Autor USP: MENEGATTO, VALDIR ANTONIO - ICMC
- Unidade: ICMC
- DOI: 10.1155/jam.2005.321
- Assunto: APROXIMAÇÃO (TEORIA)
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Applied Mathematics
- ISSN: 1110-757X
- Volume/Número/Paginação/Ano: v. 2005, n. 4, p. 321-339, 2005
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MENEGATTO, Valdir Antônio e PIANTELLA, Ana Carla. Approximation on the sphere by weighted Fourier expansions. Journal of Applied Mathematics, v. 2005, n. 4, p. 321-339, 2005Tradução . . Disponível em: https://doi.org/10.1155/jam.2005.321. Acesso em: 23 jan. 2026. -
APA
Menegatto, V. A., & Piantella, A. C. (2005). Approximation on the sphere by weighted Fourier expansions. Journal of Applied Mathematics, 2005( 4), 321-339. doi:10.1155/jam.2005.321 -
NLM
Menegatto VA, Piantella AC. Approximation on the sphere by weighted Fourier expansions [Internet]. Journal of Applied Mathematics. 2005 ; 2005( 4): 321-339.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1155/jam.2005.321 -
Vancouver
Menegatto VA, Piantella AC. Approximation on the sphere by weighted Fourier expansions [Internet]. Journal of Applied Mathematics. 2005 ; 2005( 4): 321-339.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1155/jam.2005.321 - Positive definite functions on products of metric spaces via generalized Stieltjes functions
- Generalized interpolation on spheres using positive definite and related functions
- A complex approach to strict positive definiteness on spheres
- Strict positive definiteness on spheres via disk polynomilas
- Conditionally positive definite dot procuct kernels
- From Schoenberg coefficients to Schoenberg functions: strict positive definiteness
- Positive definite kernels on complex spheres
- Approximation by spherical convolution
- Strictly positive definite multivariate covariance functions on compact two-point homogeneous spaces
- Strictly positive definite kernels on the circle
Informações sobre o DOI: 10.1155/jam.2005.321 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
