Strictly positive definite kernels on a product of spheres II (2016)
- Authors:
- USP affiliated authors: MENEGATTO, VALDIR ANTONIO - ICMC ; PERON, ANA PAULA - ICMC
- Unidade: ICMC
- DOI: 10.3842/SIGMA.2016.103
- Subjects: ANÁLISE FUNCIONAL; FUNÇÕES ESPECIAIS; ANÁLISE HARMÔNICA
- Keywords: positive definite kernels; strictly positive definiteness; isotropy; covariance functions; sphere; circle
- Language: Inglês
- Imprenta:
- Source:
- Título: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA
- ISSN: 1815-0659
- Volume/Número/Paginação/Ano: v. 12, n. 103, p. 1-15, 2016
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GUELLA, Jean C e MENEGATTO, Valdir Antônio e PERON, Ana Paula. Strictly positive definite kernels on a product of spheres II. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, v. 12, n. 103, p. 1-15, 2016Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2016.103. Acesso em: 20 jan. 2026. -
APA
Guella, J. C., Menegatto, V. A., & Peron, A. P. (2016). Strictly positive definite kernels on a product of spheres II. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 12( 103), 1-15. doi:10.3842/SIGMA.2016.103 -
NLM
Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of spheres II [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2016 ; 12( 103): 1-15.[citado 2026 jan. 20 ] Available from: https://doi.org/10.3842/SIGMA.2016.103 -
Vancouver
Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of spheres II [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2016 ; 12( 103): 1-15.[citado 2026 jan. 20 ] Available from: https://doi.org/10.3842/SIGMA.2016.103 - An extension of a theorem of Schoenberg to products of spheres
- Strictly positive definite kernels on 'S POT. 1' × 'S POT. M' (M ≥ 2)
- On the construction of uniformly convergent disk polynomial expansions
- Exact point-distributions over the complex sphere
- Strictly positive definite kernels on a product of circles
- Traceability of positive integral operators in the absence of a metric
- Differentiable positive definite kernels on spheres
- Integral operators on the sphere generated by positive definite smooth kernels
- On conditionally positive definite dot product kernels
- Mercer´s theory: non-metric results
Informações sobre o DOI: 10.3842/SIGMA.2016.103 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
