Exportar registro bibliográfico


Metrics:

Strictly positive definite kernels on a product of circles (2017)

  • Authors:
  • USP affiliated authors: MENEGATTO, VALDIR ANTONIO - ICMC ; PERON, ANA PAULA - ICMC
  • Unidade: ICMC
  • DOI: 10.1007/s11117-016-0425-1
  • Subjects: ANÁLISE FUNCIONAL; ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS; FUNÇÕES ESPECIAIS; INTERPOLAÇÃO
  • Keywords: Positive definite; Strictly positive definite; Isotropy; Product of circles; Schoenberg’s theorem; Skolem-Mahler-Lech theorem
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Positivity
    • ISSN: 1385-1292
    • Volume/Número/Paginação/Ano: v. 21, n. 1, p. 329-342, Mar. 2017
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s11117-016-0425-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GUELLA, J. C; MENEGATTO, Valdir Antônio; PERON, Ana Paula. Strictly positive definite kernels on a product of circles. Positivity, Basel, Springer/Birkhäuser, v. 21, n. 1, p. 329-342, 2017. Disponível em: < http://dx.doi.org/10.1007/s11117-016-0425-1 > DOI: 10.1007/s11117-016-0425-1.
    • APA

      Guella, J. C., Menegatto, V. A., & Peron, A. P. (2017). Strictly positive definite kernels on a product of circles. Positivity, 21( 1), 329-342. doi:10.1007/s11117-016-0425-1
    • NLM

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of circles [Internet]. Positivity. 2017 ; 21( 1): 329-342.Available from: http://dx.doi.org/10.1007/s11117-016-0425-1
    • Vancouver

      Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of circles [Internet]. Positivity. 2017 ; 21( 1): 329-342.Available from: http://dx.doi.org/10.1007/s11117-016-0425-1

    Referências citadas na obra
    Bachoc, C.: Semidefinite programming, harmonic analysis and coding theory. arXiv:0909.4767 (2010)
    Barbosa, V.S., Menegatto, V.A.: Strictly positive definite kernels on compact two-point homogeneous spaces. Math. Ineq. Appl. 19(2), 743–756 (2016)
    Cheney, E.W.: Approximation using positive definite functions. Approximation theory VIII, vol. 1 (College Station, TX, 1995), 145–168, Ser. Approx. Decompos., 6, World Sci. Publ., River Edge, NJ (1995)
    Dai, F., Xu, Y.: Approximation theory and harmonic analysis on spheres and balls. Springer Monographs in Mathematics. Springer, New York (2013)
    Everest, G., van der Poorten, A., Shparlinski, I., Ward, T.: Recurrence sequences. Mathematical Surveys and Monographs, 104. American Mathematical Society, Providence, RI (2003)
    Gneiting, T.: Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4), 1327–1349 (2013)
    Guella, J.C., Menegatto, V.A.: Strictly positive definite kernels on a product of spheres. J. Math. Anal. Appl. 435(1), 286–301 (2016)
    Guella, J.C., Menegatto, V.A., Peron, A.P.: An extension of a theorem of Schoenberg to products of spheres. Banach J. Math. Anal., (2016, to appear)
    Laurent, M.: Équations exponentielles-polynômes et suites récurrentes linéaires. II. J. Number Theory 31(1), 24–53 (1989)
    Laurent, M.: Équations diophantiennes exponentielles. Invent. Math. 78(2), 299–327 (1984)
    Luo, Zuhua: Strictly positive definiteness of Hermite interpolation on spheres. Adv. Comput. Math. 10(3–4), 261–270 (1999)
    Menegatto, V.A.: Strict positive definiteness on spheres. Analysis (Munich) 19(3), 217–233 (1999)
    Menegatto, V.A.: Strictly positive definite kernels on the circle. Rocky Mountain J. Math. 25(3), 1149–1163 (1995)
    Menegatto, V.A.: Strictly positive definite kernels on the Hilbert sphere. Appl. Anal. 55(1–2), 91–101 (1994)
    Menegatto, V.A., Oliveira, C.P., Peron, A.P.: Strictly positive definite kernels on subsets of the complex plane. Comput. Math. Appl. 51(8), 1233–1250 (2006)
    Musin, O.R.: Positive definite functions in distance geometry. European Congress of Mathematics, 115–134, Eur. Math. Soc., Zürich (2010)
    Pinkus, A.: Strictly Hermitian positive definite functions. J. Anal. Math. 94, 293–318 (2004)
    Ron, A.: Sun, Xingping, Strictly positive definite functions on spheres in Euclidean spaces. Math. Comp. 65(216), 1513–1530 (1996)
    Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9, 96–108 (1942)
    Schreiner, M.: On a new condition for strictly positive definite functions on spheres. Proc. Amer. Math. Soc. 125(2), 531–539 (1997)
    Sun, Xingping: Strictly positive definite functions on the unit circle. Math. Comp. 74(250), 709–721 (2005)
    Sun, X., Menegatto, V.A.: Strictly positive definite functions on the complex Hilbert sphere. Radial basis functions and their applications. Adv. Comput. Math. 11(2–3), 105–119 (1999)
    Szegö, G., Orthogonal polynomials. 4th edn. American Mathematical Society, Colloquium Publications, vol. XXIII. American mathematical society, Providence, R.I. (1975)

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021