Strictly positive definite kernels on a product of circles (2017)
- Authors:
- USP affiliated authors: MENEGATTO, VALDIR ANTONIO - ICMC ; PERON, ANA PAULA - ICMC
- Unidade: ICMC
- DOI: 10.1007/s11117-016-0425-1
- Subjects: ANÁLISE FUNCIONAL; ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS; FUNÇÕES ESPECIAIS; INTERPOLAÇÃO
- Keywords: Positive definite; Strictly positive definite; Isotropy; Product of circles; Schoenberg’s theorem; Skolem-Mahler-Lech theorem
- Language: Inglês
- Imprenta:
- Publisher: Springer/Birkhäuser
- Publisher place: Basel
- Date published: 2017
- Source:
- Título do periódico: Positivity
- ISSN: 1385-1292
- Volume/Número/Paginação/Ano: v. 21, n. 1, p. 329-342, Mar. 2017
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
GUELLA, J. C; MENEGATTO, Valdir Antônio; PERON, Ana Paula. Strictly positive definite kernels on a product of circles. Positivity, Basel, Springer/Birkhäuser, v. 21, n. 1, p. 329-342, 2017. Disponível em: < http://dx.doi.org/10.1007/s11117-016-0425-1 > DOI: 10.1007/s11117-016-0425-1. -
APA
Guella, J. C., Menegatto, V. A., & Peron, A. P. (2017). Strictly positive definite kernels on a product of circles. Positivity, 21( 1), 329-342. doi:10.1007/s11117-016-0425-1 -
NLM
Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of circles [Internet]. Positivity. 2017 ; 21( 1): 329-342.Available from: http://dx.doi.org/10.1007/s11117-016-0425-1 -
Vancouver
Guella JC, Menegatto VA, Peron AP. Strictly positive definite kernels on a product of circles [Internet]. Positivity. 2017 ; 21( 1): 329-342.Available from: http://dx.doi.org/10.1007/s11117-016-0425-1 - Strictly positive definite kernels on 'S POT. 1' × 'S POT. M' (M ≥ 2)
- An extension of a theorem of Schoenberg to products of spheres
- Integral operators generated by Mercer-like Kernels on topological spaces
- Mercer´s theory: non-metric results
- On conditionally positive definite dot product kernels
- Traceability of positive integral operators in the absence of a metric
- Exact point-distributions over the complex sphere
- On the construction of uniformly convergent disk polynomial expansions
- Eigenvalue decay of positive integral operators via generalized Jackson kernels
- Strict positive definiteness on spheres via disk polynomilas
Informações sobre o DOI: 10.1007/s11117-016-0425-1 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
Referências citadas na obra
Bachoc, C.: Semidefinite programming, harmonic analysis and coding theory. arXiv:0909.4767 (2010) |
---|
Barbosa, V.S., Menegatto, V.A.: Strictly positive definite kernels on compact two-point homogeneous spaces. Math. Ineq. Appl. 19(2), 743–756 (2016) |
Cheney, E.W.: Approximation using positive definite functions. Approximation theory VIII, vol. 1 (College Station, TX, 1995), 145–168, Ser. Approx. Decompos., 6, World Sci. Publ., River Edge, NJ (1995) |
Dai, F., Xu, Y.: Approximation theory and harmonic analysis on spheres and balls. Springer Monographs in Mathematics. Springer, New York (2013) |
Everest, G., van der Poorten, A., Shparlinski, I., Ward, T.: Recurrence sequences. Mathematical Surveys and Monographs, 104. American Mathematical Society, Providence, RI (2003) |
Gneiting, T.: Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4), 1327–1349 (2013) |
Guella, J.C., Menegatto, V.A.: Strictly positive definite kernels on a product of spheres. J. Math. Anal. Appl. 435(1), 286–301 (2016) |
Guella, J.C., Menegatto, V.A., Peron, A.P.: An extension of a theorem of Schoenberg to products of spheres. Banach J. Math. Anal., (2016, to appear) |
Laurent, M.: Équations exponentielles-polynômes et suites récurrentes linéaires. II. J. Number Theory 31(1), 24–53 (1989) |
Laurent, M.: Équations diophantiennes exponentielles. Invent. Math. 78(2), 299–327 (1984) |
Luo, Zuhua: Strictly positive definiteness of Hermite interpolation on spheres. Adv. Comput. Math. 10(3–4), 261–270 (1999) |
Menegatto, V.A.: Strict positive definiteness on spheres. Analysis (Munich) 19(3), 217–233 (1999) |
Menegatto, V.A.: Strictly positive definite kernels on the circle. Rocky Mountain J. Math. 25(3), 1149–1163 (1995) |
Menegatto, V.A.: Strictly positive definite kernels on the Hilbert sphere. Appl. Anal. 55(1–2), 91–101 (1994) |
Menegatto, V.A., Oliveira, C.P., Peron, A.P.: Strictly positive definite kernels on subsets of the complex plane. Comput. Math. Appl. 51(8), 1233–1250 (2006) |
Musin, O.R.: Positive definite functions in distance geometry. European Congress of Mathematics, 115–134, Eur. Math. Soc., Zürich (2010) |
Pinkus, A.: Strictly Hermitian positive definite functions. J. Anal. Math. 94, 293–318 (2004) |
Ron, A.: Sun, Xingping, Strictly positive definite functions on spheres in Euclidean spaces. Math. Comp. 65(216), 1513–1530 (1996) |
Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9, 96–108 (1942) |
Schreiner, M.: On a new condition for strictly positive definite functions on spheres. Proc. Amer. Math. Soc. 125(2), 531–539 (1997) |
Sun, Xingping: Strictly positive definite functions on the unit circle. Math. Comp. 74(250), 709–721 (2005) |
Sun, X., Menegatto, V.A.: Strictly positive definite functions on the complex Hilbert sphere. Radial basis functions and their applications. Adv. Comput. Math. 11(2–3), 105–119 (1999) |
Szegö, G., Orthogonal polynomials. 4th edn. American Mathematical Society, Colloquium Publications, vol. XXIII. American mathematical society, Providence, R.I. (1975) |