Weighted Fourier-Laplace transforms in reproducing kernel Hilbert spaces on the sphere (2014)
- Authors:
- Autor USP: MENEGATTO, VALDIR ANTONIO - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.jmaa.2013.10.020
- Assunto: ANÁLISE FUNCIONAL
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Journal of Mathematical Analysis and Applications
- ISSN: 0022-247X
- Volume/Número/Paginação/Ano: v. 411, n. 2, p. 732-741, mar. 2014
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: hybrid
- Licença: implied-oa
-
ABNT
JORDÃO, T; MENEGATTO, Valdir Antônio. Weighted Fourier-Laplace transforms in reproducing kernel Hilbert spaces on the sphere. Journal of Mathematical Analysis and Applications, San Diego, v. 411, n. 2, p. 732-741, 2014. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2013.10.020 > DOI: 10.1016/j.jmaa.2013.10.020. -
APA
Jordão, T., & Menegatto, V. A. (2014). Weighted Fourier-Laplace transforms in reproducing kernel Hilbert spaces on the sphere. Journal of Mathematical Analysis and Applications, 411( 2), 732-741. doi:10.1016/j.jmaa.2013.10.020 -
NLM
Jordão T, Menegatto VA. Weighted Fourier-Laplace transforms in reproducing kernel Hilbert spaces on the sphere [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 411( 2): 732-741.Available from: http://dx.doi.org/10.1016/j.jmaa.2013.10.020 -
Vancouver
Jordão T, Menegatto VA. Weighted Fourier-Laplace transforms in reproducing kernel Hilbert spaces on the sphere [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 411( 2): 732-741.Available from: http://dx.doi.org/10.1016/j.jmaa.2013.10.020 - Interpolation using positive definite and conditionally negative definitive kernels
- Interpolation on the complex Hilbert sphere using positive definite and conditionally negative definite kernels
- Approximate solutions of equations defined by spherical multiplier operators
- A necessary and sufficient condition for strictly positive definite functions on spheres
- Annihilating properties of convolution operators on complex spheres
- Conditionally positive definite kernels on euclidean domains
- Strictly positive definite kernels on subsets of the complex plane
- Strictly positive definite kernels on compact two-point homogeneous spaces
- Positive definite kernels on complex spheres
- Strictly positive definite functions on the complex hilbert sphere
Informações sobre o DOI: 10.1016/j.jmaa.2013.10.020 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas