Annihilating properties of convolution operators on complex spheres (2005)
- Authors:
- Autor USP: MENEGATTO, VALDIR ANTONIO - ICMC
- Unidade: ICMC
- DOI: 10.1007/s10476-005-0002-5
- Assunto: ANÁLISE MATEMÁTICA
- Language: Inglês
- Source:
- Título do periódico: Analysis Mathematica
- ISSN: 0133-3852
- Volume/Número/Paginação/Ano: v. 31, p. 13-30, 2005
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
MENEGATTO, Valdir Antônio; OLIVEIRA, Claudemir Pinheiro de. Annihilating properties of convolution operators on complex spheres. Analysis Mathematica[S.l.], v. 31, p. 13-30, 2005. DOI: 10.1007/s10476-005-0002-5. -
APA
Menegatto, V. A., & Oliveira, C. P. de. (2005). Annihilating properties of convolution operators on complex spheres. Analysis Mathematica, 31, 13-30. doi:10.1007/s10476-005-0002-5 -
NLM
Menegatto VA, Oliveira CP de. Annihilating properties of convolution operators on complex spheres. Analysis Mathematica. 2005 ; 31 13-30. -
Vancouver
Menegatto VA, Oliveira CP de. Annihilating properties of convolution operators on complex spheres. Analysis Mathematica. 2005 ; 31 13-30. - Interpolation using positive definite and conditionally negative definitive kernels
- Strictly positive definite kernels on compact two-point homogeneous spaces
- Interpolation on the complex Hilbert sphere using positive definite and conditionally negative definite kernels
- Approximate solutions of equations defined by spherical multiplier operators
- Positive definite kernels on complex spheres
- Strictly positive definite functions on the complex hilbert sphere
- A necessary and sufficient condition for strictly positive definite functions on spheres
- Conditionally positive definite kernels on euclidean domains
- Strictly positive definite kernels on subsets of the complex plane
- Generalized interpolation on spheres using positive definite and related functions
Informações sobre o DOI: 10.1007/s10476-005-0002-5 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas