Strictly positive definite functions on compact two-point homogeneous spaces: the product alternative (2018)
- Authors:
- Autor USP: MENEGATTO, VALDIR ANTONIO - ICMC
- Unidade: ICMC
- DOI: 10.3842/SIGMA.2018.112
- Subjects: FUNÇÕES HIPERGEOMÉTRICAS; ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS
- Keywords: strict positive definiteness; spheres; product kernels; linearization formulas; isotropy
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Symmetry, Integrability and Geometry : Methods and Applications - SIGMA
- ISSN: 1815-0659
- Volume/Número/Paginação/Ano: v.14, p. 1-14, 2018
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BONFIM, Rafaela N e GUELLA, Jean Carlo e MENEGATTO, Valdir Antônio. Strictly positive definite functions on compact two-point homogeneous spaces: the product alternative. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, v. 14, p. 1-14, 2018Tradução . . Disponível em: https://doi.org/10.3842/SIGMA.2018.112. Acesso em: 26 jan. 2026. -
APA
Bonfim, R. N., Guella, J. C., & Menegatto, V. A. (2018). Strictly positive definite functions on compact two-point homogeneous spaces: the product alternative. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA, 14, 1-14. doi:10.3842/SIGMA.2018.112 -
NLM
Bonfim RN, Guella JC, Menegatto VA. Strictly positive definite functions on compact two-point homogeneous spaces: the product alternative [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2018 ;14 1-14.[citado 2026 jan. 26 ] Available from: https://doi.org/10.3842/SIGMA.2018.112 -
Vancouver
Bonfim RN, Guella JC, Menegatto VA. Strictly positive definite functions on compact two-point homogeneous spaces: the product alternative [Internet]. Symmetry, Integrability and Geometry : Methods and Applications - SIGMA. 2018 ;14 1-14.[citado 2026 jan. 26 ] Available from: https://doi.org/10.3842/SIGMA.2018.112 - Generalized interpolation on spheres using positive definite and related functions
- A complex approach to strict positive definiteness on spheres
- Strict positive definiteness on spheres via disk polynomilas
- Conditionally positive definite dot procuct kernels
- From Schoenberg coefficients to Schoenberg functions: strict positive definiteness
- Positive definite kernels on complex spheres
- Approximation by spherical convolution
- Strictly positive definite multivariate covariance functions on compact two-point homogeneous spaces
- Approximation on the sphere by weighted Fourier expansions
- Strictly positive definite kernels on the circle
Informações sobre o DOI: 10.3842/SIGMA.2018.112 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
