A necessary and sufficient condition for strictly positive definite functions on spheres (2003)
- Authors:
- USP affiliated author: MENEGATTO, VALDIR ANTONIO - ICMC
- School: ICMC
- Subject: ANÁLISE MATEMÁTICA
- Language: Inglês
- Source:
- Título do periódico: Proceedings of the American Mathematical Society
- ISSN: 0002-9939
- Volume/Número/Paginação/Ano: v. 131, n.9, p. 2733-2740, 2003
-
ABNT
CHEN, Debao; MENEGATTO, Valdir Antônio; SUN, Xingping. A necessary and sufficient condition for strictly positive definite functions on spheres. Proceedings of the American Mathematical Society[S.l.], v. 131, n. 9, p. 2733-2740, 2003. -
APA
Chen, D., Menegatto, V. A., & Sun, X. (2003). A necessary and sufficient condition for strictly positive definite functions on spheres. Proceedings of the American Mathematical Society, 131( 9), 2733-2740. -
NLM
Chen D, Menegatto VA, Sun X. A necessary and sufficient condition for strictly positive definite functions on spheres. Proceedings of the American Mathematical Society. 2003 ; 131( 9): 2733-2740. -
Vancouver
Chen D, Menegatto VA, Sun X. A necessary and sufficient condition for strictly positive definite functions on spheres. Proceedings of the American Mathematical Society. 2003 ; 131( 9): 2733-2740. - Conditionally positive definite kernels on euclidean domains
- Strictly positive definite kernels on subsets of the complex plane
- Annihilating properties of convolution operators on complex spheres
- Strictly positive definite kernels on compact two-point homogeneous spaces
- Interpolation on the complex Hilbert sphere using positive definite and conditionally negative definite kernels
- Strictly positive definite functions on the complex hilbert sphere
- Interpolation using positive definite and conditionally negative definitive kernels
- Positive definite kernels on complex spheres
- Approximate solutions of equations defined by spherical multiplier operators
- Annihilating properties of complex spherical convolution operators
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas