Filtros : "Indexado no Zentralblatt MATH" "Polônia" Removidos: "1967" "2022" "Folha de São Paulo" "Roca" Limpar

Filtros



Refine with date range


  • Source: Journal of the Mathematical Society of Japan. Unidade: ICMC

    Subjects: SINGULARIDADES, GEOMETRIA AFIM, FUNÇÕES COMPLEXAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARNIK, Michal e JELONEK, Zbigniew e RUAS, Maria Aparecida Soares. Finite A-determinacy of generic homogeneous map germs in C³. Journal of the Mathematical Society of Japan, v. 73, n. 1, p. 211-220, 2021Tradução . . Disponível em: https://doi.org/10.2969/jmsj/83208320. Acesso em: 18 nov. 2024.
    • APA

      Farnik, M., Jelonek, Z., & Ruas, M. A. S. (2021). Finite A-determinacy of generic homogeneous map germs in C³. Journal of the Mathematical Society of Japan, 73( 1), 211-220. doi:10.2969/jmsj/83208320
    • NLM

      Farnik M, Jelonek Z, Ruas MAS. Finite A-determinacy of generic homogeneous map germs in C³ [Internet]. Journal of the Mathematical Society of Japan. 2021 ; 73( 1): 211-220.[citado 2024 nov. 18 ] Available from: https://doi.org/10.2969/jmsj/83208320
    • Vancouver

      Farnik M, Jelonek Z, Ruas MAS. Finite A-determinacy of generic homogeneous map germs in C³ [Internet]. Journal of the Mathematical Society of Japan. 2021 ; 73( 1): 211-220.[citado 2024 nov. 18 ] Available from: https://doi.org/10.2969/jmsj/83208320
  • Source: Journal of Geometric Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, INVARIANTES, ESTABILIDADE DE SISTEMAS, CONTROLABILIDADE, TEORIA DAS SINGULARIDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e KALITA, Piotr. On attractors of generalized semiflows with impulses. Journal of Geometric Analysis, v. 30, p. 1412–1449, 2020Tradução . . Disponível em: https://doi.org/10.1007/s12220-019-00143-0. Acesso em: 18 nov. 2024.
    • APA

      Bonotto, E. de M., & Kalita, P. (2020). On attractors of generalized semiflows with impulses. Journal of Geometric Analysis, 30, 1412–1449. doi:10.1007/s12220-019-00143-0
    • NLM

      Bonotto E de M, Kalita P. On attractors of generalized semiflows with impulses [Internet]. Journal of Geometric Analysis. 2020 ; 30 1412–1449.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s12220-019-00143-0
    • Vancouver

      Bonotto E de M, Kalita P. On attractors of generalized semiflows with impulses [Internet]. Journal of Geometric Analysis. 2020 ; 30 1412–1449.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s12220-019-00143-0
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: GEOMETRIA AFIM, SINGULARIDADES, POLINÔMIOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARNIK, Michal e JELONEK, Zbigniew e RUAS, Maria Aparecida Soares. Whitney theorem for complex polynomial mappings. Mathematische Zeitschrift, v. 295, n. 3-4, p. 1039-1065, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00209-019-02370-1. Acesso em: 18 nov. 2024.
    • APA

      Farnik, M., Jelonek, Z., & Ruas, M. A. S. (2020). Whitney theorem for complex polynomial mappings. Mathematische Zeitschrift, 295( 3-4), 1039-1065. doi:10.1007/s00209-019-02370-1
    • NLM

      Farnik M, Jelonek Z, Ruas MAS. Whitney theorem for complex polynomial mappings [Internet]. Mathematische Zeitschrift. 2020 ; 295( 3-4): 1039-1065.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s00209-019-02370-1
    • Vancouver

      Farnik M, Jelonek Z, Ruas MAS. Whitney theorem for complex polynomial mappings [Internet]. Mathematische Zeitschrift. 2020 ; 295( 3-4): 1039-1065.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s00209-019-02370-1
  • Source: Journal of Singularities. Unidade: ICMC

    Subjects: SINGULARIDADES, GEOMETRIA CONVEXA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIBLIN, Peter J. e JANECZKO, Stanisław e RUAS, Maria Aparecida Soares. Reflexion maps and geometry of surfaces in 'R POT. 4'. Journal of Singularities, v. 21, p. 84-96, 2020Tradução . . Disponível em: https://doi.org/10.5427/jsing.2020.21e. Acesso em: 18 nov. 2024.
    • APA

      Giblin, P. J., Janeczko, S., & Ruas, M. A. S. (2020). Reflexion maps and geometry of surfaces in 'R POT. 4'. Journal of Singularities, 21, 84-96. doi:10.5427/jsing.2020.21e
    • NLM

      Giblin PJ, Janeczko S, Ruas MAS. Reflexion maps and geometry of surfaces in 'R POT. 4' [Internet]. Journal of Singularities. 2020 ; 21 84-96.[citado 2024 nov. 18 ] Available from: https://doi.org/10.5427/jsing.2020.21e
    • Vancouver

      Giblin PJ, Janeczko S, Ruas MAS. Reflexion maps and geometry of surfaces in 'R POT. 4' [Internet]. Journal of Singularities. 2020 ; 21 84-96.[citado 2024 nov. 18 ] Available from: https://doi.org/10.5427/jsing.2020.21e
  • Source: Transactions of the American Mathematical Society. Unidade: ICMC

    Subjects: ATRATORES, MECÂNICA DOS SÓLIDOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LASIECKA, Irena e MA, To Fu e MONTEIRO, Rodrigo Nunes. Global smooth attractors for dynamics of thermal shallow shells without vertical dissipation. Transactions of the American Mathematical Society, v. 371, n. 11, p. 8051-8096, 2019Tradução . . Disponível em: https://doi.org/10.1090/tran/7756. Acesso em: 18 nov. 2024.
    • APA

      Lasiecka, I., Ma, T. F., & Monteiro, R. N. (2019). Global smooth attractors for dynamics of thermal shallow shells without vertical dissipation. Transactions of the American Mathematical Society, 371( 11), 8051-8096. doi:10.1090/tran/7756
    • NLM

      Lasiecka I, Ma TF, Monteiro RN. Global smooth attractors for dynamics of thermal shallow shells without vertical dissipation [Internet]. Transactions of the American Mathematical Society. 2019 ; 371( 11): 8051-8096.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1090/tran/7756
    • Vancouver

      Lasiecka I, Ma TF, Monteiro RN. Global smooth attractors for dynamics of thermal shallow shells without vertical dissipation [Internet]. Transactions of the American Mathematical Society. 2019 ; 371( 11): 8051-8096.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1090/tran/7756
  • Source: International Journal of Mathematics. Unidade: ICMC

    Subjects: DEFORMAÇÕES DE SINGULARIDADES, SUPERFÍCIES ALGÉBRICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EYRAL, Christophe e RUAS, Maria Aparecida Soares. On the Zariski multiplicity conjecture for weighted homogeneous and Newton nondegenerate line singularities. International Journal of Mathematics, v. 30, n. 10, p. 1950053-1-1950053-17, 2019Tradução . . Disponível em: https://doi.org/10.1142/S0129167X19500538. Acesso em: 18 nov. 2024.
    • APA

      Eyral, C., & Ruas, M. A. S. (2019). On the Zariski multiplicity conjecture for weighted homogeneous and Newton nondegenerate line singularities. International Journal of Mathematics, 30( 10), 1950053-1-1950053-17. doi:10.1142/S0129167X19500538
    • NLM

      Eyral C, Ruas MAS. On the Zariski multiplicity conjecture for weighted homogeneous and Newton nondegenerate line singularities [Internet]. International Journal of Mathematics. 2019 ; 30( 10): 1950053-1-1950053-17.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1142/S0129167X19500538
    • Vancouver

      Eyral C, Ruas MAS. On the Zariski multiplicity conjecture for weighted homogeneous and Newton nondegenerate line singularities [Internet]. International Journal of Mathematics. 2019 ; 30( 10): 1950053-1-1950053-17.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1142/S0129167X19500538
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: GEOMETRIA SIMPLÉTICA, CURVAS ALGÉBRICAS, SINGULARIDADES, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIRA, Fausto Assunção de Brito e DOMITRZ, Wojciech e WIK ATIQUE, Roberta. Symplectic singularity of curves with semigroups (4, 5, 6, 7), (4, 5, 6) and (4, 5, 7). Bulletin of the Brazilian Mathematical Society : New Series, v. 50, n. 2, p. 347-371, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00574-018-0102-z. Acesso em: 18 nov. 2024.
    • APA

      Lira, F. A. de B., Domitrz, W., & Wik Atique, R. (2019). Symplectic singularity of curves with semigroups (4, 5, 6, 7), (4, 5, 6) and (4, 5, 7). Bulletin of the Brazilian Mathematical Society : New Series, 50( 2), 347-371. doi:10.1007/s00574-018-0102-z
    • NLM

      Lira FA de B, Domitrz W, Wik Atique R. Symplectic singularity of curves with semigroups (4, 5, 6, 7), (4, 5, 6) and (4, 5, 7) [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2019 ; 50( 2): 347-371.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s00574-018-0102-z
    • Vancouver

      Lira FA de B, Domitrz W, Wik Atique R. Symplectic singularity of curves with semigroups (4, 5, 6, 7), (4, 5, 6) and (4, 5, 7) [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2019 ; 50( 2): 347-371.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s00574-018-0102-z
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, TEORIA DAS CATÁSTROFES, GEOMETRIA SIMPLÉTICA, FORMAS DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIRA, F. Assunção de Brito e DOMITRZ, W e WIK ATIQUE, Roberta. Classification of transversal Lagrangian stars. Topology and its Applications, v. 235, p. 352–367, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2017.11.022. Acesso em: 18 nov. 2024.
    • APA

      Lira, F. A. de B., Domitrz, W., & Wik Atique, R. (2018). Classification of transversal Lagrangian stars. Topology and its Applications, 235, 352–367. doi:10.1016/j.topol.2017.11.022
    • NLM

      Lira FA de B, Domitrz W, Wik Atique R. Classification of transversal Lagrangian stars [Internet]. Topology and its Applications. 2018 ; 235 352–367.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.topol.2017.11.022
    • Vancouver

      Lira FA de B, Domitrz W, Wik Atique R. Classification of transversal Lagrangian stars [Internet]. Topology and its Applications. 2018 ; 235 352–367.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.topol.2017.11.022
  • Source: Discrete and Continuous Dynamical Systems - Series B. Unidade: ICMC

    Subjects: EQUAÇÃO DE SCHRODINGER, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e CHOLEWA, Jan W. NLS-like equations in bounded domains: parabolic approximation procedure. Discrete and Continuous Dynamical Systems - Series B, v. 23, n. Ja 2018, p. 57-77, 2018Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2018005. Acesso em: 18 nov. 2024.
    • APA

      Carvalho, A. N. de, & Cholewa, J. W. (2018). NLS-like equations in bounded domains: parabolic approximation procedure. Discrete and Continuous Dynamical Systems - Series B, 23( Ja 2018), 57-77. doi:10.3934/dcdsb.2018005
    • NLM

      Carvalho AN de, Cholewa JW. NLS-like equations in bounded domains: parabolic approximation procedure [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2018 ; 23( Ja 2018): 57-77.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/dcdsb.2018005
    • Vancouver

      Carvalho AN de, Cholewa JW. NLS-like equations in bounded domains: parabolic approximation procedure [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2018 ; 23( Ja 2018): 57-77.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/dcdsb.2018005
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS, EQUAÇÃO DE SCHRODINGER

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank D. M et al. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, v. 457, n. Ja 2018, p. 336-360, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.08.014. Acesso em: 18 nov. 2024.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Dlotko, T., & Nascimento, M. J. D. (2018). Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, 457( Ja 2018), 336-360. doi:10.1016/j.jmaa.2017.08.014
    • NLM

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2017.08.014
    • Vancouver

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2017.08.014
  • Source: Journal of Fixed Point Theory and Applications. Unidade: ICMC

    Subjects: TOPOLOGIA ALGÉBRICA, COMPLEXOS CELULARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARZANTOWICZ, Waclaw e MATTOS, Denise de e SANTOS, Edivaldo L. dos. Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups. Journal of Fixed Point Theory and Applications, v. 19, n. 2, p. 1427-1437, 2017Tradução . . Disponível em: https://doi.org/10.1007/s11784-016-0315-y. Acesso em: 18 nov. 2024.
    • APA

      Marzantowicz, W., Mattos, D. de, & Santos, E. L. dos. (2017). Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups. Journal of Fixed Point Theory and Applications, 19( 2), 1427-1437. doi:10.1007/s11784-016-0315-y
    • NLM

      Marzantowicz W, Mattos D de, Santos EL dos. Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups [Internet]. Journal of Fixed Point Theory and Applications. 2017 ; 19( 2): 1427-1437.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s11784-016-0315-y
    • Vancouver

      Marzantowicz W, Mattos D de, Santos EL dos. Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups [Internet]. Journal of Fixed Point Theory and Applications. 2017 ; 19( 2): 1427-1437.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s11784-016-0315-y
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DA ONDA, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, F. D. M et al. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, v. 450, n. 1, p. 377-405, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.01.024. Acesso em: 18 nov. 2024.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Cholewa, J. W., & Nascimento, M. J. D. (2017). Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, 450( 1), 377-405. doi:10.1016/j.jmaa.2017.01.024
    • NLM

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2017.01.024
    • Vancouver

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2017.01.024
  • Source: Communications in Statistics - Simulation and Computation. Unidade: ICMC

    Subjects: PROBABILIDADE, INFERÊNCIA BAYESIANA, ESTATÍSTICA APLICADA, INFERÊNCIA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Breno Silveira de e LESKOW, Jacek e ANDRADE, Marinho Gomes de. Transformed GARMA model: properties and simulations. Communications in Statistics - Simulation and Computation, v. 46, n. 9, p. 7166-7179, 2017Tradução . . Disponível em: https://doi.org/10.1080/03610918.2016.1230215. Acesso em: 18 nov. 2024.
    • APA

      Andrade, B. S. de, Leskow, J., & Andrade, M. G. de. (2017). Transformed GARMA model: properties and simulations. Communications in Statistics - Simulation and Computation, 46( 9), 7166-7179. doi:10.1080/03610918.2016.1230215
    • NLM

      Andrade BS de, Leskow J, Andrade MG de. Transformed GARMA model: properties and simulations [Internet]. Communications in Statistics - Simulation and Computation. 2017 ; 46( 9): 7166-7179.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1080/03610918.2016.1230215
    • Vancouver

      Andrade BS de, Leskow J, Andrade MG de. Transformed GARMA model: properties and simulations [Internet]. Communications in Statistics - Simulation and Computation. 2017 ; 46( 9): 7166-7179.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1080/03610918.2016.1230215
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES INTEGRAIS, INTEGRAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Semicontinuity of attractors for impulsive dynamical systems. Journal of Differential Equations, v. 261, n. 8, p. 4338-4367, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2016.06.024. Acesso em: 18 nov. 2024.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Collegari, R., & Czaja, R. (2016). Semicontinuity of attractors for impulsive dynamical systems. Journal of Differential Equations, 261( 8), 4338-4367. doi:10.1016/j.jde.2016.06.024
    • NLM

      Bonotto E de M, Bortolan MC, Collegari R, Czaja R. Semicontinuity of attractors for impulsive dynamical systems [Internet]. Journal of Differential Equations. 2016 ; 261( 8): 4338-4367.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jde.2016.06.024
    • Vancouver

      Bonotto E de M, Bortolan MC, Collegari R, Czaja R. Semicontinuity of attractors for impulsive dynamical systems [Internet]. Journal of Differential Equations. 2016 ; 261( 8): 4338-4367.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jde.2016.06.024

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024