Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation (2018)
- Authors:
- Autor USP: CARVALHO, ALEXANDRE NOLASCO DE - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.jmaa.2017.08.014
- Subjects: SISTEMAS DINÂMICOS; EQUAÇÕES DIFERENCIAIS; EQUAÇÃO DE SCHRODINGER
- Keywords: Fractional Schrödinger equation; Subcritical nonlinearity; Fractional powers of operators
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Mathematical Analysis and Applications
- ISSN: 0022-247X
- Volume/Número/Paginação/Ano: v. 457, n. 1, p. 336-360, Jan. 2018
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
- Licença: publisher-specific-oa
-
ABNT
BEZERRA, Flank D. M et al. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, v. 457, n. Ja 2018, p. 336-360, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.08.014. Acesso em: 01 abr. 2025. -
APA
Bezerra, F. D. M., Carvalho, A. N. de, Dlotko, T., & Nascimento, M. J. D. (2018). Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, 457( Ja 2018), 336-360. doi:10.1016/j.jmaa.2017.08.014 -
NLM
Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.[citado 2025 abr. 01 ] Available from: https://doi.org/10.1016/j.jmaa.2017.08.014 -
Vancouver
Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.[citado 2025 abr. 01 ] Available from: https://doi.org/10.1016/j.jmaa.2017.08.014 - Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics
- Structure of attractors for skew product semiflows
- Continuity of attractors for a semilinear wave equation with variable coefficients
- Patterns in parabolic problems with nonlinear boundary conditions
- Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds
- Continuity of the dynamics in a localized large diffusion problem with nonlinear boundary conditions
- Exponential global attractors for semigroups in metric spaces with applications to differential equations
- Continuity of dynamical structures for non-autonomous evolution equations under singular perturbations
- A gradient-like non-autonomous evolution process
- Equi-exponential attraction and rate of convergence of attractors with application to a perturbed damped wave equation
Informações sobre o DOI: 10.1016/j.jmaa.2017.08.014 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas