NLS-like equations in bounded domains: parabolic approximation procedure (2018)
- Authors:
- Autor USP: CARVALHO, ALEXANDRE NOLASCO DE - ICMC
- Unidade: ICMC
- DOI: 10.3934/dcdsb.2018005
- Subjects: EQUAÇÃO DE SCHRODINGER; EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS
- Keywords: parabolic equation; critical exponents
- Language: Inglês
- Imprenta:
- Publisher place: Springfield
- Date published: 2018
- Source:
- Título: Discrete and Continuous Dynamical Systems - Series B
- ISSN: 1531-3492
- Volume/Número/Paginação/Ano: v. 23, n. 1, p. 57-77, Jan. 2018
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
CARVALHO, Alexandre Nolasco de e CHOLEWA, Jan W. NLS-like equations in bounded domains: parabolic approximation procedure. Discrete and Continuous Dynamical Systems - Series B, v. 23, n. Ja 2018, p. 57-77, 2018Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2018005. Acesso em: 28 jan. 2026. -
APA
Carvalho, A. N. de, & Cholewa, J. W. (2018). NLS-like equations in bounded domains: parabolic approximation procedure. Discrete and Continuous Dynamical Systems - Series B, 23( Ja 2018), 57-77. doi:10.3934/dcdsb.2018005 -
NLM
Carvalho AN de, Cholewa JW. NLS-like equations in bounded domains: parabolic approximation procedure [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2018 ; 23( Ja 2018): 57-77.[citado 2026 jan. 28 ] Available from: https://doi.org/10.3934/dcdsb.2018005 -
Vancouver
Carvalho AN de, Cholewa JW. NLS-like equations in bounded domains: parabolic approximation procedure [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2018 ; 23( Ja 2018): 57-77.[citado 2026 jan. 28 ] Available from: https://doi.org/10.3934/dcdsb.2018005 - Asymptotic behaviour of nonlinear parabolic equations with monotone principal part
- Abstract parabolic problems in ordered Banach spaces
- Padrões em problemas parabólicos
- Structural stability of uniform attractors under non-autonomous perturbations
- Robustness of dynamically gradient multivalued dynamical systems
- Non-autonomous Morse-smale dynamical systems: structural stability under non-autonomous perturbations
- Structure and bifurcation of pullback attractors in a non-autonomous Chafee-Infante equation
- Finite-dimensional global attractors in Banach spaces
- An estimate on the fractal dimension of attractors of gradient-like dynamical systems
- Local well posedness, asymptotic behavoir and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time
Informações sobre o DOI: 10.3934/dcdsb.2018005 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
