Exportar registro bibliográfico


Metrics:

Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups (2017)

  • Authors:
  • Autor USP: MATTOS, DENISE DE - ICMC
  • Unidade: ICMC
  • DOI: 10.1007/s11784-016-0315-y
  • Subjects: TOPOLOGIA ALGÉBRICA; COMPLEXOS CELULARES
  • Keywords: Equivariant maps; Cohomological dimension; Orthogonal representation
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s11784-016-0315-y (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MARZANTOWICZ, Waclaw; MATTOS, Denise de; SANTOS, Edivaldo L. dos. Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups. Journal of Fixed Point Theory and Applications, Basel, Springer, v. 19, n. 2, p. 1427-1437, 2017. Disponível em: < http://dx.doi.org/10.1007/s11784-016-0315-y > DOI: 10.1007/s11784-016-0315-y.
    • APA

      Marzantowicz, W., Mattos, D. de, & Santos, E. L. dos. (2017). Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups. Journal of Fixed Point Theory and Applications, 19( 2), 1427-1437. doi:10.1007/s11784-016-0315-y
    • NLM

      Marzantowicz W, Mattos D de, Santos EL dos. Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups [Internet]. Journal of Fixed Point Theory and Applications. 2017 ; 19( 2): 1427-1437.Available from: http://dx.doi.org/10.1007/s11784-016-0315-y
    • Vancouver

      Marzantowicz W, Mattos D de, Santos EL dos. Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups [Internet]. Journal of Fixed Point Theory and Applications. 2017 ; 19( 2): 1427-1437.Available from: http://dx.doi.org/10.1007/s11784-016-0315-y

    Referências citadas na obra
    Assadi, A.H.: Varieties in finite transformation groups. Bull. Amer. Math. Soc. (N.S.) 19(2), 459–463 (1988)
    Bartsch, T.: On the genus of representation spheres. Comment. Math. Helv. 65(1), 85–95 (1990)
    Bartsch, T.: On the existence of Borsuk–Ulam theorems. Topology 31, 533–543 (1992)
    Bartsch, T.: Topological Methods for Variational Problems with Symmetries. Lecture Notes in Mathematics, vol. 1560. Springer, Berlin (1993)
    Bartsch, T., Clapp, M., Puppe, D.: A mountain pass theorem for actions of compact Lie groups. J. Reine Angew. Math. 419, 55–66 (1991)
    Bourgin, D.G.: On some separation and mapping theorems. Comment. Math. Helv. 29, 199–214 (1955)
    Bredon, G.E.: Introduction to Compact Tranformation Groups (Pure and Applied Mathematics 46). Academic Press, New York (1972)
    Clapp, M., Puppe, D.: Critical point theory with symmetries. J. Reine Angew. Math. 418, 1–29 (1991)
    Deo, S., Singh, T.B.: On the converse of some theorems about orbit spaces. J. Lond. Math. Soc. (2) 25(1), 162–170 (1982)
    Dold, A.: Parametrized Borsuk–Ulam theorems. Comment. Math. Helv. 63(2), 275–285 (1988)
    Izydorek, M., Rybicki, S.: On parametrized Borsuk-Ulam theorem for free $${Z}_{p}$$ Z p -action, Algebraic topology (San Feliu de Guixols 1990) 227–234, Lecture Notes in Math., 1509, Springer, Berlin (1992)
    Dol’nikov, V.L., Karasev, R.N.: Dvoretzky type theorems for multivariate polynomials and sections of convex bodies. Geom. Funct. Anal. 21(2), 301–318 (2011)
    Marzantowicz, W.: Borsuk–Ulam theorem for any compact Lie group. J. Lond. Math. Soc. 49, 195–208 (1994)
    Marzantowicz, W., de Mattos, D., dos Santos, E.L.: Bourgin-Yang version of the Borsuk–Ulam theorem for $${\mathbb{Z}}_{p^k}$$ Z p k -equivariant maps. Algebraic Geom. Topol. 12, 2245–2258 (2012)
    Matous̆ek, J.: Using the Borsuk–Ulam Theorem. Lectures on topological methods in combinatorics and geometry ( Written in cooperation with Anders Björner and Günter M. Ziegler). Universitext. pp. xii+196, Springer, Berlin, 2003
    de Mattos, D., dos Santos, E.L.: A parametrized Borsuk–Ulam theorem for a product of spheres with free $$\mathbb{Z}_{p}$$ Z p -action and free $$S^{1}$$ S 1 -action. Algebraic Geom. Topol. 7, 1791–1804 (2007)
    Munkholm, H.J.: Borsuk–Ulam type theorems for proper $$\mathbb{Z}_{p}$$ Z p -actions on (mod p homology) $$n$$ n -spheres. Math. Scand. 24, 167–185 (1969)
    Munkholm, H.J.: On the Borsuk–Ulam theorem for $$Z_{p^{a}}$$ Z p a -actions on $$S^{2n-1}$$ S 2 n - 1 and maps $$S^{2n-1}\rightarrow \mathbb{R}^{m}$$ S 2 n - 1 → R m . Osaka J. Math. 7, 451–456 (1970)
    Nakaoka, M.: Parametrized Borsuk–Ulam theorems and characteristic polynomials. In: Topological Fixed Point Theory and Applications (Tianjin, 1988), 155–170. Lecture Notes in Math, vol. 1411. Springer, Berlin (1989)
    Volovikov, A.Y.: On a topological generalization of Tverberg’s theorem, (Russian) Mat. Zametki 59(3), 454–456 (1996); translation in Math. Notes 59(3–4), 324–325 (1996)
    Yang, C.T.: On theorems of Borsuk–Ulam, Kakutani-Yamabe-Yujobô and Dyson, I. Ann. Math. (2) 60, 262–282 (1954)
    Yang, C.T.: On theorems of Borsuk–Ulam, Kakutani-Yamabe-Yujobô and Dyson, II. Ann. Math. (2) 62, 271–283 (1955)

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020