Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups (2017)
- Authors:
- Autor USP: MATTOS, DENISE DE - ICMC
- Unidade: ICMC
- DOI: 10.1007/s11784-016-0315-y
- Subjects: TOPOLOGIA ALGÉBRICA; COMPLEXOS CELULARES
- Keywords: Equivariant maps; Cohomological dimension; Orthogonal representation
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Fixed Point Theory and Applications
- ISSN: 1661-7738
- Volume/Número/Paginação/Ano: v. 19, n. 2, p. 1427-1437, June 2017
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
MARZANTOWICZ, Waclaw e MATTOS, Denise de e SANTOS, Edivaldo L. dos. Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups. Journal of Fixed Point Theory and Applications, v. 19, n. 2, p. 1427-1437, 2017Tradução . . Disponível em: https://doi.org/10.1007/s11784-016-0315-y. Acesso em: 09 jan. 2026. -
APA
Marzantowicz, W., Mattos, D. de, & Santos, E. L. dos. (2017). Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups. Journal of Fixed Point Theory and Applications, 19( 2), 1427-1437. doi:10.1007/s11784-016-0315-y -
NLM
Marzantowicz W, Mattos D de, Santos EL dos. Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups [Internet]. Journal of Fixed Point Theory and Applications. 2017 ; 19( 2): 1427-1437.[citado 2026 jan. 09 ] Available from: https://doi.org/10.1007/s11784-016-0315-y -
Vancouver
Marzantowicz W, Mattos D de, Santos EL dos. Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups [Internet]. Journal of Fixed Point Theory and Applications. 2017 ; 19( 2): 1427-1437.[citado 2026 jan. 09 ] Available from: https://doi.org/10.1007/s11784-016-0315-y - Borsuk-Ulam theorems and their parametrized versions for spaces of type (a, b)
- Bourgin-Yang version of the Borsuk-Ulam theorem for "Z IND. P 'POT. K'-equivariant maps
- Degree of equivariant maps between generalized G-manifolds
- A survey of the cohomological degree of equivariant mapsi
- Zero sets of equivariant maps from products of spheres to Euclidean spaces
- (H, G)-coincidence theorems for manifolds and a topological Tverberg type theorem for any natural number r
- On nonsymmetric theorems for (H,G)-coincidences
- A parametrized Borsuk-Ulam theorem for a product of spheres with free 'Z IND. P'–action and free 'S POT. 1'–action
- Configuration spaces
- Borsuk–Ulam and Bourgin–Yang theorems for mod p-cohomology spheres
Informações sobre o DOI: 10.1007/s11784-016-0315-y (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
