Zero sets of equivariant maps from products of spheres to Euclidean spaces (2016)
- Authors:
- Autor USP: MATTOS, DENISE DE - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.topol.2015.12.063
- Assunto: TOPOLOGIA ALGÉBRICA
- Language: Inglês
- Imprenta:
- Source:
- Título: Topology and its Applications
- ISSN: 0166-8641
- Volume/Número/Paginação/Ano: v. 202, p. 7-20, Apr. 2016
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
- Licença: publisher-specific-oa
-
ABNT
MATTOS, Denise de et al. Zero sets of equivariant maps from products of spheres to Euclidean spaces. Topology and its Applications, v. 202, p. 7-20, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2015.12.063. Acesso em: 28 dez. 2025. -
APA
Mattos, D. de, Pergher, P. L. Q., Santos, E. L. dos, & Singh, M. (2016). Zero sets of equivariant maps from products of spheres to Euclidean spaces. Topology and its Applications, 202, 7-20. doi:10.1016/j.topol.2015.12.063 -
NLM
Mattos D de, Pergher PLQ, Santos EL dos, Singh M. Zero sets of equivariant maps from products of spheres to Euclidean spaces [Internet]. Topology and its Applications. 2016 ; 202 7-20.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1016/j.topol.2015.12.063 -
Vancouver
Mattos D de, Pergher PLQ, Santos EL dos, Singh M. Zero sets of equivariant maps from products of spheres to Euclidean spaces [Internet]. Topology and its Applications. 2016 ; 202 7-20.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1016/j.topol.2015.12.063 - Borsuk-Ulam theorems and their parametrized versions for spaces of type (a, b)
- Estimating the size of the (H, G)-coincidences set in representation spheres
- Bourgin-Yang versions of the Borsuk-Ulam theorem for (H,G)- coincidences
- Bourgin-Yang version of the Borsuk-Ulam theorem for "Z IND. P 'POT. K'-equivariant maps
- Degree of equivariant maps between generalized G-manifolds
- A survey of the cohomological degree of equivariant mapsi
- (H, G)-coincidence theorems for manifolds and a topological Tverberg type theorem for any natural number r
- Degree of equivariant maps between generalized G-manifolds
- Relative Borsuk-Ulam theorems for spaces with a free 'Z IND.2'-action
- On intersection and transversality of maps
Informações sobre o DOI: 10.1016/j.topol.2015.12.063 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
