Relative Borsuk-Ulam theorems for spaces with a free 'Z IND.2'-action (2013)
- Authors:
- Autor USP: MATTOS, DENISE DE - ICMC
- Unidade: ICMC
- DOI: 10.4064/ba61-1-8
- Subjects: TOPOLOGIA ALGÉBRICA; SINGULARIDADES
- Language: Inglês
- Imprenta:
- Source:
- Título: Bulletin of the Polish Academy of Sciences Mathematics
- ISSN: 0239-7269
- Volume/Número/Paginação/Ano: v. 61, n. 1, p. 71-77, 2013
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
-
ABNT
MATTOS, Denise de e MONIS, Thais F. M e SANTOS, Edivaldo L. dos. Relative Borsuk-Ulam theorems for spaces with a free 'Z IND.2'-action. Bulletin of the Polish Academy of Sciences Mathematics, v. 61, n. 1, p. 71-77, 2013Tradução . . Disponível em: https://doi.org/10.4064/ba61-1-8. Acesso em: 27 dez. 2025. -
APA
Mattos, D. de, Monis, T. F. M., & Santos, E. L. dos. (2013). Relative Borsuk-Ulam theorems for spaces with a free 'Z IND.2'-action. Bulletin of the Polish Academy of Sciences Mathematics, 61( 1), 71-77. doi:10.4064/ba61-1-8 -
NLM
Mattos D de, Monis TFM, Santos EL dos. Relative Borsuk-Ulam theorems for spaces with a free 'Z IND.2'-action [Internet]. Bulletin of the Polish Academy of Sciences Mathematics. 2013 ; 61( 1): 71-77.[citado 2025 dez. 27 ] Available from: https://doi.org/10.4064/ba61-1-8 -
Vancouver
Mattos D de, Monis TFM, Santos EL dos. Relative Borsuk-Ulam theorems for spaces with a free 'Z IND.2'-action [Internet]. Bulletin of the Polish Academy of Sciences Mathematics. 2013 ; 61( 1): 71-77.[citado 2025 dez. 27 ] Available from: https://doi.org/10.4064/ba61-1-8 - Borsuk-Ulam theorems and their parametrized versions for spaces of type (a, b)
- Estimating the size of the (H, G)-coincidences set in representation spheres
- Bourgin-Yang versions of the Borsuk-Ulam theorem for (H,G)- coincidences
- Bourgin-Yang version of the Borsuk-Ulam theorem for "Z IND. P 'POT. K'-equivariant maps
- Degree of equivariant maps between generalized G-manifolds
- A survey of the cohomological degree of equivariant mapsi
- Zero sets of equivariant maps from products of spheres to Euclidean spaces
- (H, G)-coincidence theorems for manifolds and a topological Tverberg type theorem for any natural number r
- Degree of equivariant maps between generalized G-manifolds
- On intersection and transversality of maps
Informações sobre o DOI: 10.4064/ba61-1-8 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
