Filtros : "França" "EESC-SEL" "Produção científica" Removido: "cx" Limpar

Filtros



Refine with date range


  • Source: The Journal of the Acoustical Society of America. Unidade: EESC

    Subjects: ELETROMAGNETISMO, FEIXES ÓPTICOS, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOUESBET, Gérard e AMBROSIO, Leonardo André. Description of acoustical Gaussian beams from the electromagnetic Davis scheme of approximations and the on-axis localized approximation. The Journal of the Acoustical Society of America, v. 155, n. 2, p. 1583-1592, 2024Tradução . . Disponível em: https://dx.doi.org/10.1121/10.0024978. Acesso em: 11 nov. 2024.
    • APA

      Gouesbet, G., & Ambrosio, L. A. (2024). Description of acoustical Gaussian beams from the electromagnetic Davis scheme of approximations and the on-axis localized approximation. The Journal of the Acoustical Society of America, 155( 2), 1583-1592. doi:10.1121/10.0024978
    • NLM

      Gouesbet G, Ambrosio LA. Description of acoustical Gaussian beams from the electromagnetic Davis scheme of approximations and the on-axis localized approximation [Internet]. The Journal of the Acoustical Society of America. 2024 ; 155( 2): 1583-1592.[citado 2024 nov. 11 ] Available from: https://dx.doi.org/10.1121/10.0024978
    • Vancouver

      Gouesbet G, Ambrosio LA. Description of acoustical Gaussian beams from the electromagnetic Davis scheme of approximations and the on-axis localized approximation [Internet]. The Journal of the Acoustical Society of America. 2024 ; 155( 2): 1583-1592.[citado 2024 nov. 11 ] Available from: https://dx.doi.org/10.1121/10.0024978
  • Source: Acta Acustica. Unidade: EESC

    Subjects: FUNÇÕES DE BESSEL, FEIXES, ACÚSTICA, FEIXES, ENGENHARIA ELÉTRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMBROSIO, Leonardo André e GOUESBET, Gérard. A localized approximation approach for the calculation of beam shape coefficients of acoustic and ultrasonic Bessel beams. Acta Acustica. Les Ulis, France: Escola de Engenharia de São Carlos, Universidade de São Paulo. Disponível em: https://dx.doi.org/10.1051/aacus/2024022. Acesso em: 11 nov. 2024. , 2024
    • APA

      Ambrosio, L. A., & Gouesbet, G. (2024). A localized approximation approach for the calculation of beam shape coefficients of acoustic and ultrasonic Bessel beams. Acta Acustica. Les Ulis, France: Escola de Engenharia de São Carlos, Universidade de São Paulo. doi:10.1051/aacus/2024022
    • NLM

      Ambrosio LA, Gouesbet G. A localized approximation approach for the calculation of beam shape coefficients of acoustic and ultrasonic Bessel beams [Internet]. Acta Acustica. 2024 ; 8 1-13.[citado 2024 nov. 11 ] Available from: https://dx.doi.org/10.1051/aacus/2024022
    • Vancouver

      Ambrosio LA, Gouesbet G. A localized approximation approach for the calculation of beam shape coefficients of acoustic and ultrasonic Bessel beams [Internet]. Acta Acustica. 2024 ; 8 1-13.[citado 2024 nov. 11 ] Available from: https://dx.doi.org/10.1051/aacus/2024022
  • Source: Journal of Quantitative Spectroscopy & Radiative Transfer. Unidade: EESC

    Subjects: FEIXES ÓPTICOS, ELETROMAGNETISMO, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMBROSIO, Leonardo André e SARRO, Jhonas Olivati de e GOUESBET, Gérard. An approach for a polychromatic generalized Lorenz–Mie theory. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 312, p. 1-11, 2024Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jqsrt.2023.108824. Acesso em: 11 nov. 2024.
    • APA

      Ambrosio, L. A., Sarro, J. O. de, & Gouesbet, G. (2024). An approach for a polychromatic generalized Lorenz–Mie theory. Journal of Quantitative Spectroscopy & Radiative Transfer, 312, 1-11. doi:10.1016/j.jqsrt.2023.108824
    • NLM

      Ambrosio LA, Sarro JO de, Gouesbet G. An approach for a polychromatic generalized Lorenz–Mie theory [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2024 ; 312 1-11.[citado 2024 nov. 11 ] Available from: http://dx.doi.org/10.1016/j.jqsrt.2023.108824
    • Vancouver

      Ambrosio LA, Sarro JO de, Gouesbet G. An approach for a polychromatic generalized Lorenz–Mie theory [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2024 ; 312 1-11.[citado 2024 nov. 11 ] Available from: http://dx.doi.org/10.1016/j.jqsrt.2023.108824
  • Source: Journal of Quantitative Spectroscopy & Radiative Transfer. Unidade: EESC

    Subjects: FEIXES ÓPTICOS, ELETROMAGNETISMO, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JIANQI, Shen et al. On evanescent waves and blowing-ups of the finite series technique in spherical wave expansion of shaped beams. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 313, p. 1-10, 2024Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jqsrt.2023.108846. Acesso em: 11 nov. 2024.
    • APA

      Jianqi, S., Siqi, T., Ambrosio, L. A., & Gouesbet, G. (2024). On evanescent waves and blowing-ups of the finite series technique in spherical wave expansion of shaped beams. Journal of Quantitative Spectroscopy & Radiative Transfer, 313, 1-10. doi:10.1016/j.jqsrt.2023.108846
    • NLM

      Jianqi S, Siqi T, Ambrosio LA, Gouesbet G. On evanescent waves and blowing-ups of the finite series technique in spherical wave expansion of shaped beams [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2024 ; 313 1-10.[citado 2024 nov. 11 ] Available from: http://dx.doi.org/10.1016/j.jqsrt.2023.108846
    • Vancouver

      Jianqi S, Siqi T, Ambrosio LA, Gouesbet G. On evanescent waves and blowing-ups of the finite series technique in spherical wave expansion of shaped beams [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2024 ; 313 1-10.[citado 2024 nov. 11 ] Available from: http://dx.doi.org/10.1016/j.jqsrt.2023.108846
  • Source: The Journal of the Acoustical Society of America. Unidade: EESC

    Subjects: FEIXES ÓPTICOS, ELETROMAGNETISMO, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOUESBET, Gérard e AMBROSIO, Leonardo André. Rigorous justification of a localized approximation to encode off-axis Gaussian acoustical beams. The Journal of the Acoustical Society of America, v. 156, n. 1, p. 672-682, 2024Tradução . . Disponível em: https://dx.doi.org/10.1121/10.0028005. Acesso em: 11 nov. 2024.
    • APA

      Gouesbet, G., & Ambrosio, L. A. (2024). Rigorous justification of a localized approximation to encode off-axis Gaussian acoustical beams. The Journal of the Acoustical Society of America, 156( 1), 672-682. doi:10.1121/10.0028005
    • NLM

      Gouesbet G, Ambrosio LA. Rigorous justification of a localized approximation to encode off-axis Gaussian acoustical beams [Internet]. The Journal of the Acoustical Society of America. 2024 ; 156( 1): 672-682.[citado 2024 nov. 11 ] Available from: https://dx.doi.org/10.1121/10.0028005
    • Vancouver

      Gouesbet G, Ambrosio LA. Rigorous justification of a localized approximation to encode off-axis Gaussian acoustical beams [Internet]. The Journal of the Acoustical Society of America. 2024 ; 156( 1): 672-682.[citado 2024 nov. 11 ] Available from: https://dx.doi.org/10.1121/10.0028005
  • Source: Journal of Quantitative Spectroscopy & Radiative Transfer. Unidade: EESC

    Subjects: FEIXES ÓPTICOS, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMBROSIO, Leonardo André e SARRO, Jhonas Olivati de e GOUESBET, Gérard. Corrigendum to ‘‘An approach for a polychromatic generalized Lorenz-Mie theory’’ [J. Quant. Spectrosc. Radiat. Transfer 312 (2024), 108824]. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 319, p. 1-2, 2024Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jqsrt.2024.108963. Acesso em: 11 nov. 2024.
    • APA

      Ambrosio, L. A., Sarro, J. O. de, & Gouesbet, G. (2024). Corrigendum to ‘‘An approach for a polychromatic generalized Lorenz-Mie theory’’ [J. Quant. Spectrosc. Radiat. Transfer 312 (2024), 108824]. Journal of Quantitative Spectroscopy & Radiative Transfer, 319, 1-2. doi:10.1016/j.jqsrt.2024.108963
    • NLM

      Ambrosio LA, Sarro JO de, Gouesbet G. Corrigendum to ‘‘An approach for a polychromatic generalized Lorenz-Mie theory’’ [J. Quant. Spectrosc. Radiat. Transfer 312 (2024), 108824] [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2024 ; 319 1-2.[citado 2024 nov. 11 ] Available from: http://dx.doi.org/10.1016/j.jqsrt.2024.108963
    • Vancouver

      Ambrosio LA, Sarro JO de, Gouesbet G. Corrigendum to ‘‘An approach for a polychromatic generalized Lorenz-Mie theory’’ [J. Quant. Spectrosc. Radiat. Transfer 312 (2024), 108824] [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2024 ; 319 1-2.[citado 2024 nov. 11 ] Available from: http://dx.doi.org/10.1016/j.jqsrt.2024.108963
  • Source: Journal of Sound and Vibration. Unidade: EESC

    Subjects: ACÚSTICA, FEIXES ÓPTICOS, ESPALHAMENTO, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMBROSIO, Leonardo André e GOUESBET, Gérard. Finite series approach for the calculation of beam shape coefficients in ultrasonic and other acoustic scattering. Journal of Sound and Vibration, v. 585, p. 1-22, 2024Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jsv.2024.118461. Acesso em: 11 nov. 2024.
    • APA

      Ambrosio, L. A., & Gouesbet, G. (2024). Finite series approach for the calculation of beam shape coefficients in ultrasonic and other acoustic scattering. Journal of Sound and Vibration, 585, 1-22. doi:10.1016/j.jsv.2024.118461
    • NLM

      Ambrosio LA, Gouesbet G. Finite series approach for the calculation of beam shape coefficients in ultrasonic and other acoustic scattering [Internet]. Journal of Sound and Vibration. 2024 ; 585 1-22.[citado 2024 nov. 11 ] Available from: http://dx.doi.org/10.1016/j.jsv.2024.118461
    • Vancouver

      Ambrosio LA, Gouesbet G. Finite series approach for the calculation of beam shape coefficients in ultrasonic and other acoustic scattering [Internet]. Journal of Sound and Vibration. 2024 ; 585 1-22.[citado 2024 nov. 11 ] Available from: http://dx.doi.org/10.1016/j.jsv.2024.118461
  • Source: Journal of Quantitative Spectroscopy & Radiative Transfer. Unidade: EESC

    Subjects: FEIXES ÓPTICOS, ELETROMAGNETISMO, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VOTTO, ^Luiz^Felipe^Machado e GOUESBET, Gérard e AMBROSIO, Leonardo André. Blowing-ups of beam shape coefficients of Gaussian beams using finite series in generalized Lorenz–Mie theory. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 311, p. 1-6, 2023Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jqsrt.2023.108787. Acesso em: 11 nov. 2024.
    • APA

      Votto, ^L. ^F. ^M., Gouesbet, G., & Ambrosio, L. A. (2023). Blowing-ups of beam shape coefficients of Gaussian beams using finite series in generalized Lorenz–Mie theory. Journal of Quantitative Spectroscopy & Radiative Transfer, 311, 1-6. doi:10.1016/j.jqsrt.2023.108787
    • NLM

      Votto ^L^F^M, Gouesbet G, Ambrosio LA. Blowing-ups of beam shape coefficients of Gaussian beams using finite series in generalized Lorenz–Mie theory [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2023 ; 311 1-6.[citado 2024 nov. 11 ] Available from: http://dx.doi.org/10.1016/j.jqsrt.2023.108787
    • Vancouver

      Votto ^L^F^M, Gouesbet G, Ambrosio LA. Blowing-ups of beam shape coefficients of Gaussian beams using finite series in generalized Lorenz–Mie theory [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2023 ; 311 1-6.[citado 2024 nov. 11 ] Available from: http://dx.doi.org/10.1016/j.jqsrt.2023.108787
  • Source: Journal of Quantitative Spectroscopy & Radiative Transfer. Unidade: EESC

    Subjects: FEIXES ÓPTICOS, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOUESBET, Gérard e DE ANGELIS, Vinicius Soares e AMBROSIO, Leonardo André. Optical forces and optical force categorizations exerted on quadrupoles in the framework of generalized Lorenz–Mie theory. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 298, p. 1-18, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jqsrt.2023.108487. Acesso em: 11 nov. 2024.
    • APA

      Gouesbet, G., De Angelis, V. S., & Ambrosio, L. A. (2023). Optical forces and optical force categorizations exerted on quadrupoles in the framework of generalized Lorenz–Mie theory. Journal of Quantitative Spectroscopy & Radiative Transfer, 298, 1-18. doi:10.1016/j.jqsrt.2023.108487
    • NLM

      Gouesbet G, De Angelis VS, Ambrosio LA. Optical forces and optical force categorizations exerted on quadrupoles in the framework of generalized Lorenz–Mie theory [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2023 ; 298 1-18.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2023.108487
    • Vancouver

      Gouesbet G, De Angelis VS, Ambrosio LA. Optical forces and optical force categorizations exerted on quadrupoles in the framework of generalized Lorenz–Mie theory [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2023 ; 298 1-18.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2023.108487
  • Source: Journal of Quantitative Spectroscopy & Radiative Transfer. Unidade: EESC

    Subjects: FEIXES ÓPTICOS, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMBROSIO, Leonardo André e JIAJIE, Wang e GOUESBET, Gérard. On a class of definite integrals with products of (Ricatti-)Bessel functions and their derivatives. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 299, p. 1-7, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jqsrt.2023.108512. Acesso em: 11 nov. 2024.
    • APA

      Ambrosio, L. A., Jiajie, W., & Gouesbet, G. (2023). On a class of definite integrals with products of (Ricatti-)Bessel functions and their derivatives. Journal of Quantitative Spectroscopy & Radiative Transfer, 299, 1-7. doi:10.1016/j.jqsrt.2023.108512
    • NLM

      Ambrosio LA, Jiajie W, Gouesbet G. On a class of definite integrals with products of (Ricatti-)Bessel functions and their derivatives [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2023 ; 299 1-7.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2023.108512
    • Vancouver

      Ambrosio LA, Jiajie W, Gouesbet G. On a class of definite integrals with products of (Ricatti-)Bessel functions and their derivatives [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2023 ; 299 1-7.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2023.108512
  • Source: Journal of Quantitative Spectroscopy & Radiative Transfer. Unidade: EESC

    Assunto: ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VOTTO, ^Luiz^Felipe^Machado et al. Ince–Gaussian beams in the generalized Lorenz–Mie theory through finite series Laguerre–Gaussian beam shape coefficients. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 302, p. 1-10, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jqsrt.2023.108565. Acesso em: 11 nov. 2024.
    • APA

      Votto, ^L. ^F. ^M., Chafiq, A., Gouesbet, G., Ambrosio, L. A., & Belafhal, A. (2023). Ince–Gaussian beams in the generalized Lorenz–Mie theory through finite series Laguerre–Gaussian beam shape coefficients. Journal of Quantitative Spectroscopy & Radiative Transfer, 302, 1-10. doi:10.1016/j.jqsrt.2023.108565
    • NLM

      Votto ^L^F^M, Chafiq A, Gouesbet G, Ambrosio LA, Belafhal A. Ince–Gaussian beams in the generalized Lorenz–Mie theory through finite series Laguerre–Gaussian beam shape coefficients [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2023 ; 302 1-10.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2023.108565
    • Vancouver

      Votto ^L^F^M, Chafiq A, Gouesbet G, Ambrosio LA, Belafhal A. Ince–Gaussian beams in the generalized Lorenz–Mie theory through finite series Laguerre–Gaussian beam shape coefficients [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2023 ; 302 1-10.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2023.108565
  • Source: Journal of Quantitative Spectroscopy & Radiative Transfer. Unidade: EESC

    Subjects: DISPERSÃO DA LUZ, FUNÇÕES DE BESSEL, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMBROSIO, Leonardo André e GOUESBET, Gérard e JIAJIE, Wang. On analytical solutions to classes of definite integrals with products of Bessel functions of the first kind and their derivatives. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 293, p. 1-5, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jqsrt.2022.108387. Acesso em: 11 nov. 2024.
    • APA

      Ambrosio, L. A., Gouesbet, G., & Jiajie, W. (2022). On analytical solutions to classes of definite integrals with products of Bessel functions of the first kind and their derivatives. Journal of Quantitative Spectroscopy & Radiative Transfer, 293, 1-5. doi:10.1016/j.jqsrt.2022.108387
    • NLM

      Ambrosio LA, Gouesbet G, Jiajie W. On analytical solutions to classes of definite integrals with products of Bessel functions of the first kind and their derivatives [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2022 ; 293 1-5.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2022.108387
    • Vancouver

      Ambrosio LA, Gouesbet G, Jiajie W. On analytical solutions to classes of definite integrals with products of Bessel functions of the first kind and their derivatives [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2022 ; 293 1-5.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2022.108387
  • Source: Journal of Quantitative Spectroscopy & Radiative Transfer. Unidade: EESC

    Subjects: FEIXES ÓPTICOS, ELETROMAGNETISMO, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMBROSIO, Leonardo André e ANGELIS, Vinicius Soares de e GOUESBET, Gérard. The generalized Lorenz-Mie theory and its identification with the dipole theory of forces for particles with electric and magnetic properties. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 281, p. 1-11, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jqsrt.2022.108104. Acesso em: 11 nov. 2024.
    • APA

      Ambrosio, L. A., Angelis, V. S. de, & Gouesbet, G. (2022). The generalized Lorenz-Mie theory and its identification with the dipole theory of forces for particles with electric and magnetic properties. Journal of Quantitative Spectroscopy & Radiative Transfer, 281, 1-11. doi:10.1016/j.jqsrt.2022.108104
    • NLM

      Ambrosio LA, Angelis VS de, Gouesbet G. The generalized Lorenz-Mie theory and its identification with the dipole theory of forces for particles with electric and magnetic properties [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2022 ; 281 1-11.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2022.108104
    • Vancouver

      Ambrosio LA, Angelis VS de, Gouesbet G. The generalized Lorenz-Mie theory and its identification with the dipole theory of forces for particles with electric and magnetic properties [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2022 ; 281 1-11.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2022.108104
  • Source: Journal of the Optical Society of America B. Unidade: EESC

    Subjects: ANÁLISE NUMÉRICA, FEIXES ÓPTICOS, ENGENHARIA ELÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMBROSIO, Leonardo André e GOUESBET, Gérard. On longitudinal radiation pressure cross-section in the generalized Lorenz–Mie theory and its relationship with the dipole theory of forces. Journal of the Optical Society of America B, v. 38, n. 2, p. 1-9, 2021Tradução . . Disponível em: http://dx.doi.org/10.1364/JOSAB.412907. Acesso em: 11 nov. 2024.
    • APA

      Ambrosio, L. A., & Gouesbet, G. (2021). On longitudinal radiation pressure cross-section in the generalized Lorenz–Mie theory and its relationship with the dipole theory of forces. Journal of the Optical Society of America B, 38( 2), 1-9. doi:10.1364/JOSAB.412907
    • NLM

      Ambrosio LA, Gouesbet G. On longitudinal radiation pressure cross-section in the generalized Lorenz–Mie theory and its relationship with the dipole theory of forces [Internet]. Journal of the Optical Society of America B. 2021 ; 38( 2): 1-9.[citado 2024 nov. 11 ] Available from: http://dx.doi.org/10.1364/JOSAB.412907
    • Vancouver

      Ambrosio LA, Gouesbet G. On longitudinal radiation pressure cross-section in the generalized Lorenz–Mie theory and its relationship with the dipole theory of forces [Internet]. Journal of the Optical Society of America B. 2021 ; 38( 2): 1-9.[citado 2024 nov. 11 ] Available from: http://dx.doi.org/10.1364/JOSAB.412907
  • Source: Journal of Quantitative Spectroscopy & Radiative Transfer. Unidade: EESC

    Subjects: FEIXES ÓPTICOS, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOUESBET, Gérard e AMBROSIO, Leonardo André. Rayleigh limit of generalized Lorenz-Mie theory: axicon terms revisited. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 270, p. 1-2, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jqsrt.2021.107691. Acesso em: 11 nov. 2024.
    • APA

      Gouesbet, G., & Ambrosio, L. A. (2021). Rayleigh limit of generalized Lorenz-Mie theory: axicon terms revisited. Journal of Quantitative Spectroscopy & Radiative Transfer, 270, 1-2. doi:10.1016/j.jqsrt.2021.107691
    • NLM

      Gouesbet G, Ambrosio LA. Rayleigh limit of generalized Lorenz-Mie theory: axicon terms revisited [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2021 ; 270 1-2.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2021.107691
    • Vancouver

      Gouesbet G, Ambrosio LA. Rayleigh limit of generalized Lorenz-Mie theory: axicon terms revisited [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2021 ; 270 1-2.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2021.107691
  • Source: Journal of the Optical Society of America B. Unidade: EESC

    Subjects: ANÁLISE NUMÉRICA, FEIXES ÓPTICOS, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANGELIS, Vinicius Soares de e AMBROSIO, Leonardo André e GOUESBET, Gérard. Comparative numerical analysis between the multipole expansion of optical force up to quadrupole terms and the generalized Lorenz–Mie theory. Journal of the Optical Society of America B, v. 38, n. 8, p. 2353-2361, 2021Tradução . . Disponível em: https://doi.org/10.1364/JOSAB.432664. Acesso em: 11 nov. 2024.
    • APA

      Angelis, V. S. de, Ambrosio, L. A., & Gouesbet, G. (2021). Comparative numerical analysis between the multipole expansion of optical force up to quadrupole terms and the generalized Lorenz–Mie theory. Journal of the Optical Society of America B, 38( 8), 2353-2361. doi:10.1364/JOSAB.432664
    • NLM

      Angelis VS de, Ambrosio LA, Gouesbet G. Comparative numerical analysis between the multipole expansion of optical force up to quadrupole terms and the generalized Lorenz–Mie theory [Internet]. Journal of the Optical Society of America B. 2021 ; 38( 8): 2353-2361.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1364/JOSAB.432664
    • Vancouver

      Angelis VS de, Ambrosio LA, Gouesbet G. Comparative numerical analysis between the multipole expansion of optical force up to quadrupole terms and the generalized Lorenz–Mie theory [Internet]. Journal of the Optical Society of America B. 2021 ; 38( 8): 2353-2361.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1364/JOSAB.432664
  • Source: Journal of Quantitative Spectroscopy & Radiative Transfer. Unidade: EESC

    Subjects: ELETROMAGNETISMO, FEIXES ÓPTICOS, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOUESBET, Gérard et al. Poynting vector and beam shape coefficients: on new families of symmetries (non-dark axisymmetric beams of the second kind and dark axisymmetric beams). Journal of Quantitative Spectroscopy & Radiative Transfer, v. 271, p. 1-13, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jqsrt.2021.107745. Acesso em: 11 nov. 2024.
    • APA

      Gouesbet, G., Votto, L. F. M., Ambrosio, L. A., & Jiajie, W. (2021). Poynting vector and beam shape coefficients: on new families of symmetries (non-dark axisymmetric beams of the second kind and dark axisymmetric beams). Journal of Quantitative Spectroscopy & Radiative Transfer, 271, 1-13. doi:10.1016/j.jqsrt.2021.107745
    • NLM

      Gouesbet G, Votto LFM, Ambrosio LA, Jiajie W. Poynting vector and beam shape coefficients: on new families of symmetries (non-dark axisymmetric beams of the second kind and dark axisymmetric beams) [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2021 ; 271 1-13.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2021.107745
    • Vancouver

      Gouesbet G, Votto LFM, Ambrosio LA, Jiajie W. Poynting vector and beam shape coefficients: on new families of symmetries (non-dark axisymmetric beams of the second kind and dark axisymmetric beams) [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2021 ; 271 1-13.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2021.107745
  • Source: Journal of Quantitative Spectroscopy & Radiative Transfer. Unidade: EESC

    Subjects: RADIAÇÃO ELETROMAGNÉTICA, FEIXES, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMBROSIO, Leonardo André e GOUESBET, Gérard. On the Rayleigh limit of the generalized Lorenz–Mie theory and its formal identification with the dipole theory of forces: I. The longitudinal case. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 262, p. 1-13, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jqsrt.2021.107531. Acesso em: 11 nov. 2024.
    • APA

      Ambrosio, L. A., & Gouesbet, G. (2021). On the Rayleigh limit of the generalized Lorenz–Mie theory and its formal identification with the dipole theory of forces: I. The longitudinal case. Journal of Quantitative Spectroscopy & Radiative Transfer, 262, 1-13. doi:10.1016/j.jqsrt.2021.107531
    • NLM

      Ambrosio LA, Gouesbet G. On the Rayleigh limit of the generalized Lorenz–Mie theory and its formal identification with the dipole theory of forces: I. The longitudinal case [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2021 ; 262 1-13.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2021.107531
    • Vancouver

      Ambrosio LA, Gouesbet G. On the Rayleigh limit of the generalized Lorenz–Mie theory and its formal identification with the dipole theory of forces: I. The longitudinal case [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2021 ; 262 1-13.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2021.107531
  • Source: Journal of Quantitative Spectroscopy & Radiative Transfer. Unidade: EESC

    Subjects: FEIXES, FÍSICA COMPUTACIONAL, ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VOTTO, Luiz Felipe Machado et al. Finite series algorithm design for lens-focused Laguerre–Gauss beams in the generalized Lorenz–Mie theory. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 261, p. 1-10, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jqsrt.2020.107488. Acesso em: 11 nov. 2024.
    • APA

      Votto, L. F. M., Ambrosio, L. A., Gouesbet, G., & Jiajie, W. (2021). Finite series algorithm design for lens-focused Laguerre–Gauss beams in the generalized Lorenz–Mie theory. Journal of Quantitative Spectroscopy & Radiative Transfer, 261, 1-10. doi:10.1016/j.jqsrt.2020.107488
    • NLM

      Votto LFM, Ambrosio LA, Gouesbet G, Jiajie W. Finite series algorithm design for lens-focused Laguerre–Gauss beams in the generalized Lorenz–Mie theory [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2021 ; 261 1-10.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2020.107488
    • Vancouver

      Votto LFM, Ambrosio LA, Gouesbet G, Jiajie W. Finite series algorithm design for lens-focused Laguerre–Gauss beams in the generalized Lorenz–Mie theory [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2021 ; 261 1-10.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2020.107488
  • Source: Journal of Quantitative Spectroscopy & Radiative Transfer. Unidade: EESC

    Subjects: FEIXES ÓPTICOS, ONDAS ELETROMAGNÉTICAS, ENGENHARIA ELÉTRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOUESBET, Gérard e AMBROSIO, Leonardo André e LOCK, James A. On an infinite number of quadratures to evaluate beam shape coefficients in generalized Lorenz-Mie theory and the extended boundary condition method for structured EM beams. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 242, p. 1-4, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jqsrt.2019.106779. Acesso em: 11 nov. 2024.
    • APA

      Gouesbet, G., Ambrosio, L. A., & Lock, J. A. (2020). On an infinite number of quadratures to evaluate beam shape coefficients in generalized Lorenz-Mie theory and the extended boundary condition method for structured EM beams. Journal of Quantitative Spectroscopy & Radiative Transfer, 242, 1-4. doi:10.1016/j.jqsrt.2019.106779
    • NLM

      Gouesbet G, Ambrosio LA, Lock JA. On an infinite number of quadratures to evaluate beam shape coefficients in generalized Lorenz-Mie theory and the extended boundary condition method for structured EM beams [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2020 ; 242 1-4.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2019.106779
    • Vancouver

      Gouesbet G, Ambrosio LA, Lock JA. On an infinite number of quadratures to evaluate beam shape coefficients in generalized Lorenz-Mie theory and the extended boundary condition method for structured EM beams [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2020 ; 242 1-4.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2019.106779

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024