On analytical solutions to classes of definite integrals with products of Bessel functions of the first kind and their derivatives (2022)
- Authors:
- Autor USP: AMBROSIO, LEONARDO ANDRÉ - EESC
- Unidade: EESC
- DOI: 10.1016/j.jqsrt.2022.108387
- Subjects: DISPERSÃO DA LUZ; FUNÇÕES DE BESSEL; ENGENHARIA ELÉTRICA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: Elsevier
- Publisher place: Langford Lane, United Kingdom
- Date published: 2022
- Source:
- Título: Journal of Quantitative Spectroscopy & Radiative Transfer
- ISSN: 0022-4073
- Volume/Número/Paginação/Ano: v. 293, article 108387, p. 1-5, 2022
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
AMBROSIO, Leonardo André e GOUESBET, Gérard e JIAJIE, Wang. On analytical solutions to classes of definite integrals with products of Bessel functions of the first kind and their derivatives. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 293, p. 1-5, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jqsrt.2022.108387. Acesso em: 18 fev. 2026. -
APA
Ambrosio, L. A., Gouesbet, G., & Jiajie, W. (2022). On analytical solutions to classes of definite integrals with products of Bessel functions of the first kind and their derivatives. Journal of Quantitative Spectroscopy & Radiative Transfer, 293, 1-5. doi:10.1016/j.jqsrt.2022.108387 -
NLM
Ambrosio LA, Gouesbet G, Jiajie W. On analytical solutions to classes of definite integrals with products of Bessel functions of the first kind and their derivatives [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2022 ; 293 1-5.[citado 2026 fev. 18 ] Available from: https://doi.org/10.1016/j.jqsrt.2022.108387 -
Vancouver
Ambrosio LA, Gouesbet G, Jiajie W. On analytical solutions to classes of definite integrals with products of Bessel functions of the first kind and their derivatives [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2022 ; 293 1-5.[citado 2026 fev. 18 ] Available from: https://doi.org/10.1016/j.jqsrt.2022.108387 - Diffraction-resistant scalar beams generated by a parabolic reflector and a source of spherical waves
- Discrete superposition of equal-frequency bessel beams: time-average forces exerted on dielectric and magnetodielectric rayleigh particles
- Modeling bessel beams and their discrete superpositions from the generalized lorenz-mie theory to calculate optical forces over spherical dielectric particles
- Transverse optical forces exerted on micro and nano particles from incident plane waves
- Analytical descriptions of finite-energy bessel beams in the generalized Lorenz-Mie theory
- Sobre a validade da aproximação localizada para peixes escalares de Bessel ordinários na teoria generalizada de Lorenz-Mie: feixes On-Axis
- On the validity of the use of a localized approximation for helical beams: I. Formal aspects
- Approximations to the mie scattering coefficients for plasmonic and negative-index rayleigh scatterers
- On localized approximations for helical beams
- Analytical description of paraxial higher-order frozen waves in generalized Lorenz-Mie theory: the finite-energy case
Informações sobre o DOI: 10.1016/j.jqsrt.2022.108387 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| Ref36_SubmittedManuscript... | Direct link | ||
| 1-s2.0-S0022407322003223-... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
