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In certain physical problems of light scattering, classes of integrals appear which involve particular products of Bessel
functions of the first kind with complex argument and integer orders n and n± 1 (−∞ ≤ n ≤ ∞), and also products
of derivatives of such Bessel functions. Due to the lack of available analytical solutions in the literature, numerical
calculations of these integrals have been recently carried out for the evaluation of photophoretic asymmetry factors
(PAFs) in problems involving the illumination of lossy infinite cylinders, either in isolation or close to conducting
corner spaces or planar boundaries, by plane waves or light-sheets. Here, we show that these integrals can actually be
resolved analytically, therefore allowing for faster computation of physical quantities of interest in light scattering by
small particles.

I. INTRODUCTION

In light scattering of arbitrary-shaped beams by micro-
cylinder-shaped particles immersed in a simple and lossless
gas or fluid, the incident, scattered and internal electromag-
netic fields are usually expressed in terms of partial wave
expansions using a cylindrical coordinate system1–5. The
expanded internal fields are then subsequently incorporated
into the formulas for the (radiant-absorption) heat generation
function, Q6–11, which in turn embodies all the necessary
electromagnetic information regarding the calculation of pho-
tophoretic optical forces through the photophoretic asymme-
try factors (PAFs). An accurate evaluation of the PAFs consti-
tutes one of the first steps towards the determination of pho-
tophoretic forces, which are optical forces of thermal origin
related to the light scattering and subsequent unbalanced heat
absorption on the surface of the scatterer12–22.

In recent investigations [see, e.g., Eqs. (30)-(33) of Ref.23,
Eqs. (16)-(19) of Ref.24 and Eqs. (17)-(20) of Ref.25], Mitri
has developed a semi-analytical method which provides reli-
able information on the longitudinal (L-) and transverse (T-
) PAFs, either for cylinders in isolation or close to corner
spaces25 and planar boundaries24, or even for aggregates of
infinite cylinders23. The expansion coefficients for the in-
ternal fields are found from boundary conditions and, in all
physical configurations, it can be noticed that, neglecting ir-
relevant multiplicative factors, constants and expansion coef-
ficients which are of no interest here, the formulas for the L-
and T-PAFs become proportional to the following integrals,
which can be compactly represented as:

I+
1 =

1∫
0

ξ
2Jn(mckaξ )Jn+1(m∗

ckaξ )dξ , (1)

I−
1 =

1∫
0

ξ
2Jn(mckaξ )Jn−1(m∗

ckaξ )dξ , (2)

and

I+
2 =

1∫
0

[
n(n+1)

|mc|2(ka)2
Jn(mckaξ )Jn+1(m∗

ckaξ )

+ξ
2J′n(mckaξ )J′n+1(m

∗
ckaξ )

]
dξ ,

(3)

I−
2 =

1∫
0

[
n(n−1)

|mc|2(ka)2
Jn(mckaξ )Jn−1(m∗

ckaξ )

+ξ
2J′n(mckaξ )J′n−1(m

∗
ckaξ )

]
dξ .

(4)

In Eqs. (1)-(4), n (−∞ ≤ n ≤ ∞) is an integer, mc is the
complex relative refractive index of the homogeneous cylin-
der with respect to the host fluid (gas or liquid) in which it is
immersed, k = 2π/λ is the wave number in the external loss-
less medium (λ is the wavelength) and a is the radius of the
infinite cylinder. The asterisk denotes complex conjugation,
and Jν(z) are Bessel functions of the first kind, with a prime
denoting differentiation with respect to the argument.

In this paper, we show that analytical solutions can be found
for Eqs. (1)-(4), thus transforming semi-analytical calcula-
tions of L- and T-PAFs into pure analytical methods. In doing
so, we shall make use of known solutions to particular inte-
grals, Bessel’s differential equation, integration by parts and
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recurrence relations for Bessel functions. To the best of the
authors’ knowledge, the procedure here outlined cannot be
found anywhere in the literature, nor any analytical solution
to Eqs. (1)-(4) has been presented elsewhere.

We organize this paper as follows. In Sec. II we derive
the solutions to Eqs. (1)-(4). Then, in Sec. III we provide
quantitative information on the reduced computational burden
offered by the present approach, as compared with the semi-
analytical methods currently available. Finally, our conclu-
sions are presented in Sec. IV.

II. GENERAL ANALYTICAL SOLUTIONS TO EQs. (1)-(4)

Let us rewrite Eqs. (1)-(4) in terms of a new variable
ρ = xξ , where x= ka is the size parameter of the scatterer. For
simplicity, we shall henceforth write mc = M. Then, noticing
that the complex conjugation can be placed outside the argu-
ment and applied directly to the Bessel functions and their
derivatives themselves, we have, instead of Eqs. (1) and (2),
the compact form:

I±
1 =

1
x3

x∫
0

ρ
2Jn(Mρ)J∗n±1(Mρ)dρ (5)

and similarly, for Eqs. (3) and (4),

I±
2 =

1
x3

x∫
0

[
n(n±1)

|M|2
Jn(Mρ)J∗n±1(Mρ)

+ρ
2J′n(Mρ)J′∗n±1(Mρ)

]
dρ.

(6)

A. Analytical solution for Eq. (5)

To derive an analytic solution for Eq. (5), we start with a
similar integral, which is valid for arbitrary real (not necessar-
ily integer) order v:

1
x3

x∫
0

ρ
2Jv(Mρ)J∗v±1(Mρ)dρ, (7)

and make use of the following recurrence relations [see Eqs.
(14.7) and (14.8), page 646 of Ref.26, with comments in page
653 for non-integer order]:

Jv∓1(Mρ) =
v

Mρ
Jv(Mρ)± J′v(Mρ) (8)

Substituting the complex conjugate of Eq. (8) in Eq. (7) for
J∗v±1(Mρ), one then finds that

1
x3

x∫
0

ρ
2Jv(Mρ)J∗v±1(Mρ)dρ =

1
x3

v
M∗

x∫
0

ρ|Jv(Mρ)|2dρ

∓ 1
x3

x∫
0

ρ
2Jv(Mρ)J′∗v (Mρ)dρ

(9)

The first integral in the r.h.s. of Eq. (9) can be resolved by
introducing the following indefinite integral [see item 5.54,
page 639 of Ref.27, or Eq. (8), Sec. 5.11 of Ref.28]:

∫
zJv(αz)Jv(β z)dz=

αzJv+1(αz)Jv(β z)−β zJv(αz)Jv+1(β z)
α2 −β 2

(10)
which, for integration from 0 to x and after setting α = M,
β = M∗ and z = ρ , can be recast under the form

Rv ≡
x∫

0

ρ|Jv(Mρ)|2dρ =
Im [MxJv+1(Mx)J∗v (Mx)]

Im(M2)
, (11)

so that the first integral in the r.h.s. of Eq. (9) has been found.
For the last integral of Eq. (9), one can have recourse to

Ref.6, [see Eqs. (60) and (61) of the aforementioned refer-
ence, which also hold for arbitrary real order v]:

Sv ≡
x∫

0

ρψ
∗
v (Mρ)ψ ′

v(Mρ)dρ =

− i
2Im(M2)

{
x
[
M|ψv(Mx)|2 +M∗|ψv+1(Mx)|2

]
− π|M|

2

[(
M+2(v+1)

Re(M2)

M

)
Rv+1/2

+(2v+1)M∗Rv+3/2

]}
,

(12)

where ψv(z) = (πz/2)1/2Jv+1/2(z) are Ricatti-Bessel func-
tions.

After some straightforward algebra, the integral of Eq. (12)
can be recast in terms only of Bessel functions and their
derivatives:

Sv =
π|M|

2
1

2M
Rv+1/2

+
π|M|

2

x∫
0

ρ
2J∗v+1/2(Mρ)J′v+1/2(Mρ)dρ

(13)

which is equal to
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Sv =− i
2Im(M2)

πx2|M|
2

×

{
M
∣∣Jv+1/2(Mx)

∣∣2 +M∗∣∣Jv+3/2(Mx)
∣∣2

− 1
x2

(
M+2(v+1)

Re(M2)

M

) x∫
0

ρ
∣∣Jv+1/2(Mρ)

∣∣2dρ

+
2v+1

x2 M∗
x∫

0

ρ
∣∣Jv+3/2(Mρ)

∣∣2dρ

}
(14)

From Eqs. (13) and (14), but with the substitution v →
v−1/2, it can be shown that

x∫
0

ρ
2J∗v (Mρ)J′v(Mρ)dρ =

2
π|M|Sv−1/2 −

1
2M

Rv

=− i
2Im(M2)

{
x2
[
M|Jv(Mx)|2 +M∗|Jv+1(Mx)|2

]
−
[

M+2
(

v+
1
2

)
Re(M2)

M

]
Rv +2vM∗Rv+1

}

− 1
2M

Rv.

(15)

The terms proportional to Rv in Eq. (15) can be merged as
follows:

i
2Im(M2)

[
M+2

(
v+

1
2

)
Re(M2)

M

]
Rv −

1
2M

Rv

=
i

2Im(M2)

[
M+2

(
v+

1
2

)
Re(M2)

M

− 1
2M

2Im(M2)

i

]
Rv

=
i

2Im(M2)

[(
M+

Re(M2)

M
− 1

2M
2Im(M2)

i

)

+2v
Re(M2)

M

]
Rv

=
i

2Im(M2)

(
2M+2v

Re(M2)

M

)
Rv

(16)

where, in passing from the second to the third identity in
Eq. (16) we use the fact that Re(M2) = [M2 +(M2)∗]/2 and
Im(M2)= [M2−(M2)∗]/2i to further simplify the terms under
parenthesis.

After substitution of Eq. (16) in Eq. (15), one then gets

x∫
0

ρ
2Jv(Mρ)J′∗v (Mρ)dρ = (Sv)

∗ (17)

where

Sv =− i
2Im(M2)

{
x2
[
M|Jv(Mx)|2 +M∗|Jv+1(Mx)|2

]
−2

(
M+ v

Re(M2)

M

)
Rv +2vM∗Rv+1

} (18)

From Eqs. (9) and (11), together with the results found in
Eqs. (15)-(18), we next impose v = n, where n is an integer,
to finally conclude that

1
x3

x∫
0

ρ
2Jn(Mρ)J∗n±1(Mρ)dρ =

1
x3

[ n
M∗ Rn ∓ (Sn)

∗
]

= I±
1 ,

(19)

in which (Sn)
∗ is given by the complex conjugate of Eq. (18)

and Rn by Eq. (11), both of which with v = n.
Equation (19) is the analytical solution we seek for Eq. (1)

[or, equivalently, Eq. (5)].

B. Analytical solution for Eq. (6)

To analytically solve Eq. (6) for I±
2 , we use Eq. (8) with

v = n an integer, together with the following recurrence rela-
tions which can also be derived from this equation:

J′∗n±1(Mρ) =±J∗n (Mρ)∓ n±1
M∗ρ

J∗n±1(Mρ). (20)

From Eqs. (8) and (20), the term ρ2J′n(Mρ)J′∗n±1(Mρ) in
Eq. (6) can be put in the form:

ρ
2J′n(Mρ)J′∗n±1(Mρ) = ρ

2
(
∓Jn±1(Mρ)± n

Mρ
Jn(Mρ)

)
×
(
±J∗n (Mρ)∓ n±1

M∗ρ
J∗n±1(Mρ)

)
=−ρ

2J∗n (Mρ)Jn±1(Mρ)+
n±1
M∗ ρJn±1(Mρ)J∗n±1(Mρ)

+
n
M

ρJn(Mρ)J∗n (Mρ)− n(n±1)

|M|2
Jn(Mρ)J∗n±1(Mρ)

(21)

Substituting Eq. (21) into Eq. (6), one notices that the first
term in the integrand of Eq. (6) is cancelled out by the last
term of Eq. (21). In addition, the integral associated with the
first term in the r.h.s. of the last identity of Eq. (21) is, except
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for a sign change, nothing but (I±
1 )∗, which has been deter-

mined in the previous subsection and is given by the complex
conjugate of Eq. (19). As for the second and third terms in the
r.h.s. of Eq. (21), they are directly proportional to Rn±1 and
Rn, respectively. Gathering it all, one can re-express Eq. (6)
as

1
x3

x∫
0

[
n(n±1)

|M|2
Jn(Mρ)J∗n±1(Mρ)

+ρ
2J′n(Mρ)J′∗n±1(Mρ)

]
dρ =− 1

x3

( n
M

Rn ∓Sn

)
+

1
x3

n±1
M∗ Rn±1 +

1
x3

n
M

Rn.

(22)

After simplification, Eq. (22) can be written as

1
x3

x∫
0

[
n(n±1)

|M|2
Jn(Mρ)J∗n±1(Mρ)

+ρ
2J′n(Mρ)J′∗n±1(Mρ)

]
dρ =

1
x3

(
n±1
M∗ Rn±1 ±Sn

)
,

(23)

or, equivalently, as

I±
2 =

1
x3

(
n±1
M∗ Rn±1 ±Sn

)
, (24)

Equation (23) or, alternatively, Eq. (24), is the result we
seek for the integral given in Eq. (6).

III. NUMERICAL AND COMPUTATIONAL
CONSIDERATIONS

In order to establish the correctness of Eqs. (19) and (24),
we have developed a code using the software Wolfram Math-
ematica 12.1 Student Edition. The code was then run on a
personal computer [Intel(R) Core(TM) i7-3630QM CPU @
2.40GHz, 16.0 GB], and both the elapsed times (E.T.) and
calculated values (C.V.) have been saved.

Table I presents data for I±
1 . Numerical calculations of Eq.

(5) are represented by I±
1,num, while the corresponding ana-

lytical formulas [Eq. (19)] are represented by I±
1,ana. Table

II shows similar results, but now for I±
2 . Since we want to

have an accurate comparison between Eqs. (1)-(4) and their
analytical formulas given by Eqs. (19) and (24), in all numer-
ical simulations we use a command which tries to evaluate the
integral exactly (function “Integrate[ f (ρ),{ρ ,ρmin,ρmax}]”,
where ρmin = 0 and ρmax = x) before attempting at any numer-
ical approximation scheme (for instance, use of the function
“NIntegrate[ f (ρ),{ρ ,ρmin,ρmax}]”, see Wolfram Mathematica
documentation29). Although computed values are shown with

six significant digits, agreement has been checked and verified
up to the 50th significant digit.

Besides assuring the correctness of our analytical formu-
las, Tables I and II also reveals that the introduction of ana-
lytical formulas significantly reduce computational burden, as
expected. To better appreciate the impact of such a reduction
in an actual physical situation, let us illustrate the calculation
of the PAFs for an infinite dielectric cylinder illuminated by a
plane wave, according to the geometry presented in Fig. 1 of
Ref.24. In this particular scenario, the wave propagates along
the x axis of a Cartesian coordinate system (x,y,z), the main
axis of the cylinder coinciding with the z axis. Therefore, the
T-PAF Je,y, the y component of the PAF, is equal to zero. As-
suming a time-harmonic convention exp(+iωt), where ω is
the angular frequency of the incident wave, the L-PAF Je,x can
be expressed, after some rearrangement of Eq. (16) of Ref.24,
as follows:

Je,x =− x Im(εc)Re
+∞

∑
n=−∞

{
bT E

n CT E
n

[
bT E∗

n−1CT E∗
n−1I

−
2

+bT E∗
n+1CT E∗

n+1I
+
2

]
+bT M

n CT M
n

[
bT M∗

n−1 CT M∗
n−1 I−

1

+bT M∗
n+1 CT M∗

n+1 I+
1

]}
.

(25)

In Eq. (25), εc is the relative permittivity of the cylinder,
x = ka is its size parameter, bT X

n are expansion coefficients
which fully describes the spatial contents of a particular wave
field (T X = T E or T M, T E standing for “Transverse Elec-
tric” and T M for “Transverse Magnetic”) and CT X

n are coef-
ficients for internal fields which depend on M and x (the size
parameter of the cylinder), being obtained from electromag-
netic boundary conditions at the surface of the cylinder.

The coefficients for internal fields CT E
n and CT M

n can be
written as24,30,31:

CT E
n =

J′n(x)H
(2)
n (x)− Jn(x)[H

(2)
n (x)]′

J′n(Mx)H(2)
n (x)−MJn(Mx)[H(2)

n (x)]′
(26)

and

CT M
n =

Jn(x)[H
(2)
n (x)]′− J′n(x)H

(2)
n (x)

J′n(Mx)[H(2)
n (x)]′−MJ′n(Mx)H(2)

n (x)
. (27)

Notice that, because of the time-harmonic convention, in
this paper CT E

n and CT M
n are expressed in terms of Hankel

functions H(2)
n (.), and not of H(1)

n (.).
Table III shows Je,x for several values of x = ka between

1 and 20, together with the E.T. for the evaluation of Eq. (25)
carried out either numerically (Jnum

e,x ) or from Eqs. (19) and
(24) (J ana

e,x ). A T E configuration has been chosen, such that
bT E

n = (−i)n and bT M
n = 024. The infinite sum in Eq. (25)

has been truncated in accordance with Wiscombe’s criterium
nmax = round[x+4.05x1/3 +2]32, and we have used the same
values of M and εc as in Tables I and II. This particular choice
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TABLE I. Calculated values (C.V.) and elapsed times (E.T.), in seconds, for I±
1 , for several values of n. I±

1,num represents I±
1 as calculated

from Eq. (5), while I±
1,ana represents I±

1 as calculated from the analytic expression provided by Eq. (19). The cylinder has x = ka = 20 and a
relative permittivity εc = 2.4635− i0.1193 (M =

√
εc = 1.5700− i3.7993×10−2). The value for εc has been chosen in accordance with Fig.

2 of Ref.24. Numerical outputs have been calculated using the function “Integral[ f (ρ),{ρ ,ρmin,ρmax}]”, see Ref.29.

I+
1 I−

1
n C.V.a E.T. (I+

1,num)b E.T. (I+
1,ana)b C.V.a E.T. (I−

1,num)b E.T. (I−
1,ana)b

0 2.32279×10−4 + i6.41880×10−3 2.52520 0.0198955 −2.32279×10−4 − i6.41880×10−3 0.399476 0.0206048
1 7.01146×10−4 + i6.39622×10−3 0.503545 0.0195711 2.32279×10−4 − i6.41880×10−3 0.516400 0.0206423
5 2.61274×10−3 + i6.08718×10−3 0.533446 0.0193255 1.94754×10−3 − i6.19753×10−3 0.527844 0.0211438

10 4.47236×10−3 + i5.24450×10−3 0.644501 0.0177169 4.10511×10−3 − i5.45207×10−3 0.664070 0.0181969
20 5.93117×10−3 + i2.54320×10−3 1.13520 0.0173345 6.17290×10−3 − i2.83611×10−3 1.15912 0.0173816
50 6.81364×10−17 + i2.06099×10−18 0.485938 0.0054033 5.81286×10−16 − i1.77766×10−17 0.542316 0.0061767

100 1.08548×10−82 + i2.76075×10−84 0.499713 0.0022628 4.27407×10−81 − i1.08817×10−82 0.523574 0.0027728

a All values are presented with six significant digits.
b Elapsed time is limited down to the minimum time interval (in seconds) recorded on the computer system.

TABLE II. Calculated values (C.V.) and elapsed times (E.T.), in seconds, for I±
2 , for several values of n. I±

2,num represents I±
2 as calculated

from Eq. (6), while I±
2,ana represents I±

2 as calculated from the analytic expression provided by Eq. (24). The cylinder has the same values of
x and M as in Table I. Numerical outputs have been calculated using the function “Integral[ f (ρ),{ρ ,ρmin,ρmax}]”, see Ref.29.

I+
2 I−

2
n C.V.a E.T. (I+

2,num)b E.T. (I+
2,ana)b C.V.a E.T. (I−

2,num)b E.T. (I−
2,ana)b

0 2.34433×10−4 + i6.40751×10−3 2.10647 0.0268280 −2.34433×10−4 − i6.40751×10−3 2.67518 0.0202969
1 6.76092×10−4 + i6.38548×10−3 5.65676 0.0292484 2.34433×10−4 − i6.40751×10−3 1.61558 0.0205657
5 2.34062×10−3 + i6.07766×10−3 5.81103 0.0266828 2.13682×10−3 − i6.18601×10−3 5.99656 0.0203182

10 4.33344×10−3 + i5.23897×10−3 6.08995 0.0217748 4.01613×10−3 − i5.44103×10−3 6.21083 0.0166023
20 6.22479×10−3 + i2.54195×10−3 7.35369 0.0202804 6.15429×10−3 − i2.84151×10−3 7.13465 0.0155233
50 2.94449×10−16 + i9.00225×10−18 4.53538 0.0071048 2.39392×10−15 − i7.40589×10−17 4.55446 0.0054060

100 2.13839×10−81 + i5.44429×10−83 5.07520 0.0031795 8.24579×10−80 − i2.10162×10−81 4.52853 0.0024835

a All values are presented with six significant digits.
b Elapsed time is limited down to the minimum time interval (in seconds) recorded on the computer system.

of M and x ensures that we are actually picking up specific val-
ues of Je,x associated with the curve JT E

e,x , Fig. 2(a) of Ref.24.
For comparison, the E. T. recorded for the analytical calcu-

lation (J ana
e,x ) of such a curve with a list of 100 points was

of 334.525 s, or 5.57541 min, while the numerical evaluation
using the buit-in function “Integrate[ f (ρ),{ρ ,ρmin,ρmax}]”
(J num

e,x ) demanded more than 13 hours (or, precisely, 13.7177
hours). The use of a numerical approximation scheme can
reduce this time reasonably. If we allow the software to auto-
matically select the best integration method (J num

e,x |best ), the
E.T. reduces to 1,287.16 s, or 21.4527 min, which is still at
least three times longer than the E.T. observed when using
Eqs. (19) and (24). Maximum percentage error observed re-
mained below 10−9%.

As for the numerical integration based on the trapezoidal
rule with a sampling step δq = 10−3 (J num

e,x |trap), as adopted
in Ref.24, numerical integration converged too slow and the
computation of the integrals demanded additional specifica-
tions of both the working precision (the number of digits dp
to be maintained for internal computations) and the number
of effective digits of accuracy, da. For dp = da = 6, results
were generated after 18,347.1 s, or 5.09641 hours. However,

TABLE III. Calculated values (C.V.) and elapsed times (E.T.), in sec-
onds, for the L-PAF Je,x under TE configuration, for different val-
ues of x = ka. J num

e,x represents Je,x as calculated from numerical
integration of Eq. (6), while J ana

e,x represents Je,x as calculated
from the analytic expression provided by Eq. (24). The cylinder has
the same values of M and εc as in Tables I and II.

Je,x
x = ka C.V.a E.T. (J num

e,x )b E.T. (J ana
e,x )b

1 0.00188092 177.847 0.172748
5 0.0309144 298.054 0.393333

10 -0.0113271 649.477 1.69427
15 -0.0795463 780.537 4.39050
20 -0.138282 924.008 7.78548

a All values are presented with six significant digits.
b Elapsed time is limited down to the minimum time interval (in seconds)

recorded on the computer system.

noticeable errors as high as 140% have been observed in this
case and for the particular choices of dp and da. It has been
observed that, although the slope of the generated curves do
not differ significantly, as illustrated in Fig. 1(a), errors are
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FIG. 1. (a) Reproduction of Fig. 2(a), curve “JT E
e,x ” of Ref.24.

The red dashed curve corresponds to Je,x|trap, while the black so-
lic curve represents J ana

e,x . Curves have been computed with 100
points. Visually, they do not differ significantly. (b) Percentage error
100

∣∣(J ana
e,x −J num

e,x |trap)/J ana
e,x

∣∣. Errors are larger for low values
of the considered L-PAF.

high for low values of Je,x [Fig. 1(b)].
Since the integrals presented in Eqs. (1)-(4) are quite gen-

eral, in the sense that they might be found in several other
configurations beyond those presented in Refs.23–25, we be-
lieve that the solutions here presented are of significant inter-
est to the physics and engineering community in the fields of
light scattering and photophoresis.

IV. CONCLUSIONS

In this paper we have derived analytical solutions to specific
classes of definite integrals involving products between Bessel
functions of the first kind with complex arguments and integer
order n and n±1 and also between derivatives of such special
function. In doing so, we have actually been able to pave the
way for faster and accurate calculation of photophoretic asym-
metry factors in light scattering by infinite cylinders. Since the
same classes of integrals appear not only when dealing with
isolated dielectric cylinders illuminated by plane waves, but
with arbitrary refractive index cylinders or aggregates of them
under illumination by arbitrary-shaped beams, the results here
found might be of general application in several other inves-

tigations in the field of photophoresis involving infinite cylin-
ders. Furthermore, we expect that extensions to products be-
tween Bessel functions of different kinds might be useful in
problems which incorporate concentric and eccentric hetero-
geneous cylinders. This is currently in progress.
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