Ince–Gaussian beams in the generalized Lorenz–Mie theory through finite series Laguerre–Gaussian beam shape coefficients (2023)
- Authors:
- USP affiliated authors: AMBROSIO, LEONARDO ANDRÉ - EESC ; VOTTO, LUIZ FELIPE MACHADO - EESC
- Unidade: EESC
- DOI: 10.1016/j.jqsrt.2023.108565
- Assunto: ENGENHARIA ELÉTRICA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: Elsevier
- Publisher place: Langford Lane, United Kingdom
- Date published: 2023
- Source:
- Título: Journal of Quantitative Spectroscopy & Radiative Transfer
- ISSN: 0022-4073
- Volume/Número/Paginação/Ano: v. 302, article 108565, p. 1-10, 2023
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
VOTTO, ^Luiz^Felipe^Machado et al. Ince–Gaussian beams in the generalized Lorenz–Mie theory through finite series Laguerre–Gaussian beam shape coefficients. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 302, p. 1-10, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jqsrt.2023.108565. Acesso em: 10 fev. 2026. -
APA
Votto, ^L. ^F. ^M., Chafiq, A., Gouesbet, G., Ambrosio, L. A., & Belafhal, A. (2023). Ince–Gaussian beams in the generalized Lorenz–Mie theory through finite series Laguerre–Gaussian beam shape coefficients. Journal of Quantitative Spectroscopy & Radiative Transfer, 302, 1-10. doi:10.1016/j.jqsrt.2023.108565 -
NLM
Votto ^L^F^M, Chafiq A, Gouesbet G, Ambrosio LA, Belafhal A. Ince–Gaussian beams in the generalized Lorenz–Mie theory through finite series Laguerre–Gaussian beam shape coefficients [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2023 ; 302 1-10.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.jqsrt.2023.108565 -
Vancouver
Votto ^L^F^M, Chafiq A, Gouesbet G, Ambrosio LA, Belafhal A. Ince–Gaussian beams in the generalized Lorenz–Mie theory through finite series Laguerre–Gaussian beam shape coefficients [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2023 ; 302 1-10.[citado 2026 fev. 10 ] Available from: https://doi.org/10.1016/j.jqsrt.2023.108565 - Semantic web-based system for light scattering using the generalized Lorenz-Mie theory
- Finite series expressions to evaluate the beam shape coefficients of a Laguerre-Gauss beam focused by a lens in an on-axis configuration
- Finite series expressions to evaluate the beam shape coefficients of a Laguerre–Gauss beam freely propagating
- Poynting vector and beam shape coefficients: on new families of symmetries (non-dark axisymmetric beams of the second kind and dark axisymmetric beams)
- Evaluation of beam shape coefficients in T-matrix methods using a finite series technique: on blow-ups using hypergeometric functions and generalized Bessel polynomials
- A framework for the finite series method of the generalized Lorenz-Mie theory and its application to freely-propagating Laguerre-Gaussian beams
- Blowing-ups of beam shape coefficients of Gaussian beams using finite series in generalized Lorenz–Mie theory
- Assessing the validity of the localized approximation for discrete superpositions of bessel beams
- Relationship between scalar and electromagnetic beam shape coefficients for fields with a propagating factor of exp(±𝑖𝛽𝑧): linear and circular polarizations
- Finite series algorithm design for lens-focused Laguerre–Gauss beams in the generalized Lorenz–Mie theory
Informações sobre o DOI: 10.1016/j.jqsrt.2023.108565 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 1-s2.0-S0022407323000833-... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
