On the Rayleigh limit of the generalized Lorenz–Mie theory and its formal identification with the dipole theory of forces: I. The longitudinal case (2021)
- Authors:
- Autor USP: AMBROSIO, LEONARDO ANDRÉ - EESC
- Unidade: EESC
- DOI: 10.1016/j.jqsrt.2021.107531
- Subjects: RADIAÇÃO ELETROMAGNÉTICA; FEIXES; ENGENHARIA ELÉTRICA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: Elsevier
- Publisher place: Langford Lane, United Kingdom
- Date published: 2021
- Source:
- Título: Journal of Quantitative Spectroscopy & Radiative Transfer
- ISSN: 0022-4073
- Volume/Número/Paginação/Ano: v. 262, article 107531, p. 1-13, 2021
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
AMBROSIO, Leonardo André e GOUESBET, Gérard. On the Rayleigh limit of the generalized Lorenz–Mie theory and its formal identification with the dipole theory of forces: I. The longitudinal case. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 262, p. 1-13, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jqsrt.2021.107531. Acesso em: 12 jan. 2026. -
APA
Ambrosio, L. A., & Gouesbet, G. (2021). On the Rayleigh limit of the generalized Lorenz–Mie theory and its formal identification with the dipole theory of forces: I. The longitudinal case. Journal of Quantitative Spectroscopy & Radiative Transfer, 262, 1-13. doi:10.1016/j.jqsrt.2021.107531 -
NLM
Ambrosio LA, Gouesbet G. On the Rayleigh limit of the generalized Lorenz–Mie theory and its formal identification with the dipole theory of forces: I. The longitudinal case [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2021 ; 262 1-13.[citado 2026 jan. 12 ] Available from: https://doi.org/10.1016/j.jqsrt.2021.107531 -
Vancouver
Ambrosio LA, Gouesbet G. On the Rayleigh limit of the generalized Lorenz–Mie theory and its formal identification with the dipole theory of forces: I. The longitudinal case [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2021 ; 262 1-13.[citado 2026 jan. 12 ] Available from: https://doi.org/10.1016/j.jqsrt.2021.107531 - On a new type of micrometer-structured non-diffracting wave field: surface beams based on continuous superpositions of zeroth-order bessel beams
- Variant of the angular spectrum decomposition method for evaluating the beam shape coefficients: a comparison with the finite series technique
- A localized approximation approach for the calculation of beam shape coefficients of acoustic and ultrasonic Bessel beams
- Rayleigh limit of generalized Lorenz-Mie theory: axicon terms revisited
- The 𝑁-beam approach to describe arbitrary shaped acoustical fields
- Longitudinal and transverse photophoretic force on a homogeneous sphere exerted by a Bessel beam with selective polarizations
- On a relationship between acoustical (more generally scalar) beam shape coefficients and electromagnetic beam shape coefficients of some T-matrix theories for structured beams
- On radial quadrature method applied to spherical wave expansion of Gaussian beams
- On the accuracy of approximate descriptions of discrete superpositions of Bessel beams in the generalized Lorenz-Mie theory
- Zeroth-order continuous vector frozen waves for light scattering: exact multipole expansion in the generalized Lorenz–Mie theory
Informações sobre o DOI: 10.1016/j.jqsrt.2021.107531 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 1-s2.0-S0022407321000248-... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
