On an infinite number of quadratures to evaluate beam shape coefficients in generalized Lorenz-Mie theory and the extended boundary condition method for structured EM beams (2020)
- Authors:
- Autor USP: AMBROSIO, LEONARDO ANDRÉ - EESC
- Unidade: EESC
- DOI: 10.1016/j.jqsrt.2019.106779
- Subjects: FEIXES ÓPTICOS; ONDAS ELETROMAGNÉTICAS; ENGENHARIA ELÉTRICA
- Language: Inglês
- Imprenta:
- Publisher place: Langford Lane, United Kingdom
- Date published: 2020
- Source:
- Título: Journal of Quantitative Spectroscopy & Radiative Transfer
- ISSN: 0022-4073
- Volume/Número/Paginação/Ano: v. 242, article 106779, p. 1-4, Feb. 2020
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
- Licença: publisher-specific-oa
-
ABNT
GOUESBET, Gérard e AMBROSIO, Leonardo André e LOCK, James A. On an infinite number of quadratures to evaluate beam shape coefficients in generalized Lorenz-Mie theory and the extended boundary condition method for structured EM beams. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 242, p. 1-4, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jqsrt.2019.106779. Acesso em: 11 nov. 2024. -
APA
Gouesbet, G., Ambrosio, L. A., & Lock, J. A. (2020). On an infinite number of quadratures to evaluate beam shape coefficients in generalized Lorenz-Mie theory and the extended boundary condition method for structured EM beams. Journal of Quantitative Spectroscopy & Radiative Transfer, 242, 1-4. doi:10.1016/j.jqsrt.2019.106779 -
NLM
Gouesbet G, Ambrosio LA, Lock JA. On an infinite number of quadratures to evaluate beam shape coefficients in generalized Lorenz-Mie theory and the extended boundary condition method for structured EM beams [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2020 ; 242 1-4.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2019.106779 -
Vancouver
Gouesbet G, Ambrosio LA, Lock JA. On an infinite number of quadratures to evaluate beam shape coefficients in generalized Lorenz-Mie theory and the extended boundary condition method for structured EM beams [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2020 ; 242 1-4.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jqsrt.2019.106779 - On localized approximations for Laguerre-Gauss beams focused by a lens
- Sobre a validade da aproximação localizada para feixes escalares de Bessel ordinários na teoria generalizada de Lorenz-Mie: feixes Off-Axis
- Structuring light under different polarization states within micrometer domains: exact analysis from the Maxwell equations
- Zeroth-order continuous vector frozen waves for light scattering: exact multipole expansion in the generalized Lorenz–Mie theory
- A localized approximation approach for the calculation of beam shape coefficients of acoustic and ultrasonic Bessel beams
- Extracting metamaterial properties of negative-index and plasmonic scatterers from the mie coefficients
- On the validity of integral localized approximation for on-axis zeroth-order Mathieu beams
- On the validity of the use of a localized approximation for helical beams: II. Numerical aspects
- Transverse optical forces exerted on micro and nano particles from incident plane waves
- Millimeter-structured nondiffracting surface beams
Informações sobre o DOI: 10.1016/j.jqsrt.2019.106779 (Fonte: oaDOI API)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
1-s2.0-S0022407319307575-... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas