A framework for multi-document extractive summarization of reviews with aspect-based sentiment analysis (2020)
- Authors:
- USP affiliated authors: COSTA, ANNA HELENA REALI - EP ; HRUSCHKA, EDUARDO RAUL - EP ; OLIVEIRA, ANDRÉ SEIDEL - EP
- Unidade: EP
- Subjects: LINGUAGEM NATURAL; APRENDIZADO COMPUTACIONAL; BANCO DE DADOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: Sociedade Brasileira de Computação
- Publisher place: Porto Alegre
- Date published: 2020
- Source:
- Título: [Anais]: ENIAC 2020
- ISSN: 2763-9061
- Conference titles: Encontro Nacional de Inteligência Artificial e Computacional
-
ABNT
OLIVEIRA, André Seidel e REALI COSTA, Anna Helena e HRUSCHKA, Eduardo Raul. A framework for multi-document extractive summarization of reviews with aspect-based sentiment analysis. 2020, Anais.. Porto Alegre: Sociedade Brasileira de Computação, 2020. Disponível em: https://doi.org/10.5753/eniac.2020.12152. Acesso em: 02 dez. 2025. -
APA
Oliveira, A. S., Reali Costa, A. H., & Hruschka, E. R. (2020). A framework for multi-document extractive summarization of reviews with aspect-based sentiment analysis. In [Anais]: ENIAC 2020. Porto Alegre: Sociedade Brasileira de Computação. Recuperado de https://doi.org/10.5753/eniac.2020.12152 -
NLM
Oliveira AS, Reali Costa AH, Hruschka ER. A framework for multi-document extractive summarization of reviews with aspect-based sentiment analysis [Internet]. [Anais]: ENIAC 2020. 2020 ;[citado 2025 dez. 02 ] Available from: https://doi.org/10.5753/eniac.2020.12152 -
Vancouver
Oliveira AS, Reali Costa AH, Hruschka ER. A framework for multi-document extractive summarization of reviews with aspect-based sentiment analysis [Internet]. [Anais]: ENIAC 2020. 2020 ;[citado 2025 dez. 02 ] Available from: https://doi.org/10.5753/eniac.2020.12152 - Summarizing multiple websites for automatic PT-BR wikipedia generation
- An experimental study on the use of nearest neighbor-based imputation algorithms for classification tasks
- Unsupervised learning of Gaussian mixture models: evolutionary create and eliminate for expectation maximization algorithm
- Transfer learning with cluster ensembles
- An Experimental Study on Unsupervised Clustering-Based Feature Selection Methods
- On the influence of imputation in classification: practical issues
- ZeroBERTo: leveraging zero-shot text classification by topic modeling
- Towards improving cluster-based feature selection with a simplified silhouette filter
- Document clustering for forensic computing: an approach for improving computer inspection
- Document clustering for forensic analysis: an approach for improving computer inspection
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| A_Framework_for_Multi-doc... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
