Reliability analysis and asset management of engineering systems: advances in reliability science (2022)
- Authors:
- USP affiliated authors: SOUZA, GILBERTO FRANCISCO MARTHA DE - EP ; NETTO, ADHERBAL CAMINADA - EP ; MELANI, ARTHUR HENRIQUE DE ANDRADE - EP ; MICHALSKI, MIGUEL ANGELO DE CARVALHO - EP ; SILVA, RENAN FAVARÃO DA - EP
- Unidade: EP
- DOI: 10.1016/C2020-0-00478-0
- Subjects: ADMINISTRAÇÃO DE MANUTENÇÃO DE FÁBRICAS E EQUIPAMENTOS; INDÚSTRIA 4.0; TEORIA DA CONFIABILIDADE
- Language: Inglês
- Imprenta:
- Descrição física: 303 p
- ISBN: 9780128235218
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SOUZA, Gilberto Francisco Martha de et al. Reliability analysis and asset management of engineering systems: advances in reliability science. . Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/C2020-0-00478-0. Acesso em: 21 jan. 2026. , 2022 -
APA
Souza, G. F. M. de, Caminada Netto, A., Melani, A. H. de A., Michalski, M. A. D. C., & Silva, R. F. da. (2022). Reliability analysis and asset management of engineering systems: advances in reliability science. Amsterdam: Elsevier. doi:10.1016/C2020-0-00478-0 -
NLM
Souza GFM de, Caminada Netto A, Melani AH de A, Michalski MADC, Silva RF da. Reliability analysis and asset management of engineering systems: advances in reliability science [Internet]. 2022 ;[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/C2020-0-00478-0 -
Vancouver
Souza GFM de, Caminada Netto A, Melani AH de A, Michalski MADC, Silva RF da. Reliability analysis and asset management of engineering systems: advances in reliability science [Internet]. 2022 ;[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/C2020-0-00478-0 - A framework for in-service life extension of hydroelectric generation assets
- Applying an unsupervised machine learning method for defining maintenance significant items
- A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network
- Remaining useful life estimation based on an adaptive approach of Autoregressive Integrated Moving Average (ARIMA)
- Fault detection and diagnosis based on unsupervised machine learning methods: a Kaplan turbine case study
- Applying principal component analysis for multi-parameter failure prognosis and determination of remaining useful life
- Failure Mode and Observability Analysis (FMOA): an FMEA-based method to support fault detection and diagnosis
- Identifying changes in degradation stages for an unsupervised fault prognosis method for engineering systems
- Reliability and risk centered maintenance: a novel method for supporting maintenance management
- A fault detection framework based on data-driven digital shadows
Informações sobre o DOI: 10.1016/C2020-0-00478-0 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
