A fault detection framework based on data-driven digital shadows (2024)
- Authors:
- USP affiliated authors: MICHALSKI, MIGUEL ANGELO DE CARVALHO - EP ; MELANI, ARTHUR HENRIQUE DE ANDRADE - EP ; SILVA, RENAN FAVARÃO DA - EP ; SOUZA, GILBERTO FRANCISCO MARTHA DE - EP
- Unidade: EP
- DOI: 10.1115/1.4063795
- Subjects: INDÚSTRIA 4.0; REALIDADE VIRTUAL; MANUTENÇÃO PREDITIVA; MODELAGEM DE DADOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Fairfield, NJ
- Date published: 2024
- Source:
- Título: ASCE-ASME journal of risk and uncertainty in engineering systems: part B: mechanical engineering
- ISSN: 2332-9017
- Volume/Número/Paginação/Ano: v. 10, n. 1, article number 011103, p. 1-15, Mar. 2024
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MICHALSKI, Miguel Angelo De Carvalho et al. A fault detection framework based on data-driven digital shadows. ASCE-ASME journal of risk and uncertainty in engineering systems: part B: mechanical engineering, v. 10, n. 1, p. 1-15, 2024Tradução . . Disponível em: https://doi.org/10.1115/1.4063795. Acesso em: 23 jan. 2026. -
APA
Michalski, M. A. D. C., Melani, A. H. de A., Silva, R. F. da, & Souza, G. F. M. de. (2024). A fault detection framework based on data-driven digital shadows. ASCE-ASME journal of risk and uncertainty in engineering systems: part B: mechanical engineering, 10( 1), 1-15. doi:10.1115/1.4063795 -
NLM
Michalski MADC, Melani AH de A, Silva RF da, Souza GFM de. A fault detection framework based on data-driven digital shadows [Internet]. ASCE-ASME journal of risk and uncertainty in engineering systems: part B: mechanical engineering. 2024 ; 10( 1): 1-15.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1115/1.4063795 -
Vancouver
Michalski MADC, Melani AH de A, Silva RF da, Souza GFM de. A fault detection framework based on data-driven digital shadows [Internet]. ASCE-ASME journal of risk and uncertainty in engineering systems: part B: mechanical engineering. 2024 ; 10( 1): 1-15.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1115/1.4063795 - A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network
- A framework for in-service life extension of hydroelectric generation assets
- Applying an unsupervised machine learning method for defining maintenance significant items
- Remaining useful life estimation based on an adaptive approach of Autoregressive Integrated Moving Average (ARIMA)
- Applying principal component analysis for multi-parameter failure prognosis and determination of remaining useful life
- Fault detection and diagnosis based on unsupervised machine learning methods: a Kaplan turbine case study
- Failure Mode and Observability Analysis (FMOA): an FMEA-based method to support fault detection and diagnosis
- Identifying changes in degradation stages for an unsupervised fault prognosis method for engineering systems
- Reliability and risk centered maintenance: a novel method for supporting maintenance management
- Applying cluster analysis to support failure management policy selection in asset management: a hydropower plant case study
Informações sobre o DOI: 10.1115/1.4063795 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3243208.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
