A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network (2021)
- Authors:
- USP affiliated authors: SOUZA, GILBERTO FRANCISCO MARTHA DE - EP ; MELANI, ARTHUR HENRIQUE DE ANDRADE - EP ; MICHALSKI, MIGUEL ANGELO DE CARVALHO - EP ; SILVA, RENAN FAVARÃO DA - EP
- Unidade: EP
- DOI: 10.1016/j.ress.2021.107837
- Subjects: MANUTENÇÃO PREDITIVA; FALHA; COMPONENTES PRINCIPAIS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Reliability engineering & systems safety
- ISSN: 0951-8320
- Volume/Número/Paginação/Ano: v. 215, p. 1-22, Nov. 2021
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MELANI, Arthur Henrique de Andrade et al. A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network. Reliability engineering & systems safety, v. No 2021, p. 1-22, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.ress.2021.107837. Acesso em: 22 jan. 2026. -
APA
Melani, A. H. de A., Michalski, M. A. D. C., Souza, G. F. M. de, & Silva, R. F. da. (2021). A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network. Reliability engineering & systems safety, No 2021, 1-22. doi:10.1016/j.ress.2021.107837 -
NLM
Melani AH de A, Michalski MADC, Souza GFM de, Silva RF da. A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network [Internet]. Reliability engineering & systems safety. 2021 ; No 2021 1-22.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1016/j.ress.2021.107837 -
Vancouver
Melani AH de A, Michalski MADC, Souza GFM de, Silva RF da. A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network [Internet]. Reliability engineering & systems safety. 2021 ; No 2021 1-22.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1016/j.ress.2021.107837 - A framework for in-service life extension of hydroelectric generation assets
- Applying an unsupervised machine learning method for defining maintenance significant items
- Remaining useful life estimation based on an adaptive approach of Autoregressive Integrated Moving Average (ARIMA)
- Fault detection and diagnosis based on unsupervised machine learning methods: a Kaplan turbine case study
- Applying principal component analysis for multi-parameter failure prognosis and determination of remaining useful life
- Failure Mode and Observability Analysis (FMOA): an FMEA-based method to support fault detection and diagnosis
- Identifying changes in degradation stages for an unsupervised fault prognosis method for engineering systems
- Reliability and risk centered maintenance: a novel method for supporting maintenance management
- A fault detection framework based on data-driven digital shadows
- Applying cluster analysis to support failure management policy selection in asset management: a hydropower plant case study
Informações sobre o DOI: 10.1016/j.ress.2021.107837 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3276639.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
