Fault detection and diagnosis based on unsupervised machine learning methods: a Kaplan turbine case study (2022)
- Authors:
- USP affiliated authors: MELANI, ARTHUR HENRIQUE DE ANDRADE - EP ; SOUZA, GILBERTO FRANCISCO MARTHA DE - EP ; MICHALSKI, MIGUEL ANGELO DE CARVALHO - EP ; SILVA, RENAN FAVARÃO DA - EP
- Unidade: EP
- DOI: 10.3390/en15010080
- Subjects: MANUTENÇÃO PREDITIVA; TURBINAS HIDRÁULICAS; FALHA; APRENDIZADO COMPUTACIONAL
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MICHALSKI, Miguel Angelo De Carvalho et al. Fault detection and diagnosis based on unsupervised machine learning methods: a Kaplan turbine case study. Energies, v. 15, n. 11, p. 1-20, 2022Tradução . . Disponível em: https://doi.org/10.3390/en15010080. Acesso em: 22 jan. 2026. -
APA
Michalski, M. A. D. C., Melani, A. H. de A., Silva, R. F. da, Souza, G. F. M. de, & Hamaji, F. H. (2022). Fault detection and diagnosis based on unsupervised machine learning methods: a Kaplan turbine case study. Energies, 15( 11), 1-20. doi:10.3390/en15010080 -
NLM
Michalski MADC, Melani AH de A, Silva RF da, Souza GFM de, Hamaji FH. Fault detection and diagnosis based on unsupervised machine learning methods: a Kaplan turbine case study [Internet]. Energies. 2022 ; 15( 11): 1-20.[citado 2026 jan. 22 ] Available from: https://doi.org/10.3390/en15010080 -
Vancouver
Michalski MADC, Melani AH de A, Silva RF da, Souza GFM de, Hamaji FH. Fault detection and diagnosis based on unsupervised machine learning methods: a Kaplan turbine case study [Internet]. Energies. 2022 ; 15( 11): 1-20.[citado 2026 jan. 22 ] Available from: https://doi.org/10.3390/en15010080 - A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network
- A framework for in-service life extension of hydroelectric generation assets
- Applying an unsupervised machine learning method for defining maintenance significant items
- Remaining useful life estimation based on an adaptive approach of Autoregressive Integrated Moving Average (ARIMA)
- Applying principal component analysis for multi-parameter failure prognosis and determination of remaining useful life
- Failure Mode and Observability Analysis (FMOA): an FMEA-based method to support fault detection and diagnosis
- Identifying changes in degradation stages for an unsupervised fault prognosis method for engineering systems
- Reliability and risk centered maintenance: a novel method for supporting maintenance management
- A fault detection framework based on data-driven digital shadows
- Applying cluster analysis to support failure management policy selection in asset management: a hydropower plant case study
Informações sobre o DOI: 10.3390/en15010080 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3276437.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
